0
1265

SBI PO Arithmetic Questions PDF

Arithmetic Questions for SBI PO Prelims and Mains exam. Download SBI PO Approximation questions on with solutions.

Instructions: What will come in place of question mark (?) in the following questions?

Question 1: $(\sqrt{5} – \sqrt{10})^2 + (\sqrt{2} + 5)^2 = (?)^3 – 22$

a) $\sqrt{2}$

b) $2$

c) $16$

d) $8$

e) None of these

Question 2: 55% of $\sqrt{2116}$ ÷ 0.01 = ? × 20

a) 126.5

b) 126.6

c) 124.6

d) 125.4

e) None of these

Question 3: $\sqrt {12^2 \times 16 \div 24 + 193 + 7 \times 5} = (?)^2$

a) 3$\sqrt{2}$

b) 4$\sqrt{2}$

c) 5$\sqrt{2}$

d) $18$

e) $32$

Question 4: $\sqrt{31.36}$ ÷ $\sqrt{0.64}$ ×252 = (?)2 ×36

a) 81

b) 64

c) -8

d) -7

e) 9

Question 5: (1.69)4 ÷ (2197 ÷1000)3 × (0.13×10)3 = (1.3)? – 2

a) 6

b) 2

c) 4

d) 0

e) None of these

Instructions

Instructions: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value.)

Question 6: 68% of 1288 + 26% of 734 -215=?

a) 620

b) 930

c) 540

d) 850

e) 710

Question 7: (32.05)2 – (18.9)2 – (11.9)2 = ?

a) 670

b) 530

c) 420

d) 780

e) 960

Question 8: 6578 ÷ 65 × 15= ? × 6

a) 200

b) 250

c) 150

d) 100

e) 300

Question 9: $\frac{679}{45}$ ÷ $\frac{23}{2130}$ × $\frac{126}{169}$ = ?

a) 540

b) 760

c) 800

d) 1260

e) 1040

Question 10: $\sqrt{5687}$ × $\sqrt{1245}$ ÷ $\sqrt{689}$ = ?÷13

a) 840

b) 910

c) 1320

d) 1120

e) 1550

Instructions

What approximate value will come in place of the question mark (?) in the following question?

Question 11: 32.05% of 259.99 =?

a) 92

b) 88

c) 78

d) 90

e) 83

Question 12: $\frac{1}{8}$ of $\frac{2}{3}$ of$\frac{3}{5}$of 1715=?

a) 80

b) 85

c) 90

d) 95

e) 75

Question 13: $25.05\times123.95+388.999\times15.001$=?

a) 900

b) 8950

c) 8935

d) 8975

e) 8995

Question 14: $561\div35.05\times19.99$=?

a) 320

b) 330

c) 315

d) 325

e) 335

Question 15: $(15.01)^{2}\times\sqrt{730}$=?

a) 6125

b) 6225

c) 6200

d) 6075

e) 6250

Instructions

What approximate value should come in place of the question mark (?) in the following questions? You are not expected to calculate the exact value.

Question 16: $750.0003\div19.999=?$

a) 49

b) 18

c) 22

d) 45

e) 38

Question 17: 6888.009-487.999-87.898=?

a) 6000

b) 6500

c) 6430

d) 6200

e) 6310

Question 18: $(9.5)^{2}$=?

a) 75

b) 90

c) 125

d) 110

e) 80

Question 19: $19.003\times22.998-280.010=?$

a) 220

b) 110

c) 160

d) 90

e) 200

Question 20: $5454\div54\div5=?$

a) 15

b) 25

c) 30

d) 20

e) 10

Instructions

What will come in place of question mark (?) in the following questions:

Question 21: $32\cdot05$% of 259.99=?

a) 92

b) 88

c) 78

d) 90

e) 83

Question 22: $\frac{1}{8} of \frac{2}{3} of \frac{3}{5}$ of 1715=?

a) 80

b) 85

c) 90

d) 95

e) 75

Question 23: $25\cdot05\times123\cdot95+388\cdot999\times15\cdot001=?$

a) 900

b) 8950

c) 8935

d) 8975

e) 8995

Question 24: $561\div35\cdot05\times19\cdot99$=?

a) 320

b) 330

c) 315

d) 325

e) 335

Question 25: $(15\cdot01)^{2}\times\sqrt{730}=?$

a) 6125

b) 6225

c) 6200

d) 6075

e) 6250

($\sqrt{5}$ – $\sqrt{10}$)2
= 5 + 10 – 2$\sqrt{50}$
= 15 – 2 x 5$\sqrt{2}$
= 15 – 10$\sqrt{2}$
($\sqrt{2}$ + 5)2
= 2 + 25 + 10$\sqrt{2}$
= 27 + 10$\sqrt{2}$

Sum = 42
42 + 22 = 64
$\sqrt{64}$ = 4.

$\sqrt{2116}$ = 46
46 ÷ 0.01 = 4600
55% of 4600 = 2530
2530 ÷ 20 = 126.5

16÷24 = 0.666
122 = 144
0.666 x 144 = 96
7 x 5 =35
96 + 193 + 35 = 324
$\sqrt{324}$ = 18
18 = [3$\sqrt{2}$]2
Hence, Option A is correct answer.

$\sqrt{31.36}$ = 5.6
$\sqrt{0.64}$ = 0.8
5.6 ÷ 0.8 = 7
7 x 252 = 1764
1764 ÷ 36 = 49
$\sqrt{49}$ = ±7

1.69= 8.15
2.1973 = 10.6
1.33 = 2.197

[8.15 ÷ 10.6 ] x 2.197 = 1.689 ≈ 1.69 = 1.32

1.34-2 =1.32

68% of 1288 = 875.84
26% of 734 = 190.84
Sum = 875.84 + 190.84 = 1066.68
1066.68 – 215 = 851.68 ≈ 850

32= 1024
19= 361
122 = 144
1024 – 361 -144 = 519 ≈ 530

6578 ÷ 65 = 101.2
101.2 x 15 = 1518
1518 ÷ 6 = 253 ≈ 250

$\frac{679}{45}$ = 15.08
$\frac{2130}{23}$ = 92.60

15.08 x 92.60 = 1396.53
126 ÷ 169 = 0.74

1033.43 ≈ 1040

$\sqrt{5687}$ = 75.41
$\sqrt{1245}$ = 35.28
$\sqrt{689}$ = 26.24

75.41 x 35.28 = 2660.46
2660.46 ÷ 26.24 = 101.38
101.38 x 13 = 1318.06 ≈ 1320

As we need to find the approximate value only,

32.05% of 259.99 can be approximated to 32% of 260 = 0.32 *260 = 83.2

Option (e) is the closest to this and hence is the answer

We need to find the approximate value of $\frac{1}{8}$ of $\frac{2}{3}$ of $\frac{3}{5}$ of 1715

$\frac{1}{8}$ of $\frac{2}{3}$ of $\frac{3}{5}$ = $\frac{1}{20}$

Hence, the approximate value equals $\frac{1}{20} \times 1715 = 85.75 \approx 85$

Hence, the correct answer is option (b)

As we are finding the approximate value of the given equation, let us slightly increase one of the terms and decrease the other time slightly.

Hence, $25.05\times123.95+388.999\times15.001 \approx 25 \times 124 + 389\times 15$

This equals $3100 + 5835 = 8935$

So, the correct option is option (c)

$561\div35.05\times19.99 \approx 560 \div 35 \times 20$

This equals $16 \times 20 = 320$

Hence, the correct option is option (a)

As we need to find the approximate value of the given equation, we can make some small approximations.

$(15.01)^{2}\times\sqrt{730} \approx 15^2 \times \sqrt{729}$

This equals $225*27 = 6075$

Hence, the correct option is option (d)

The given expression equals $750.0003\div19.999=?$

Note that this can be simplified to an approximate value of $750 \div 20 = 37.5 \approx 38$

As the other options are not close enough to $37.5$, we can conclude that the correct answer is option (e)

In questions like this, the onus is on solving questions with a good level of accuracy.

Note that $6888.009 \approx 6888$

$487.999 \approx 488$

$87.898 \approx 88$

So, the expression equals $6888 – 488 – 88 = 6888 – 576 = 6312 \approx 6310$

In order to find the approximate value of $9.5^2$, we write $9.5 = 9 + 0.5$

So, $9.5^2 = (9+0.5)^2 = 9^2 + 2*0.5*9 + 0.5^2 = 81 + 9 +0.25 = 90.25 \approx 90$

In order to find the approximate value of $19.003\times22.998-280.010$, we use the approximate values of each of the entities

$19.003 \approx 19$

$22.998 \approx 23$

$280.010 \approx 280$

So, the equation is approximately equal to $19 \times 23 – 280 = 437 – 280 = 157 \approx 160$

The required expression is $5454 \div 54 \div 5 = 101 \div 5$

The approximate value of $101 \div \approx 20$

Hence, the correct option is option (d)

The problem can be solved quickly by rounding off,

32.05% ~32 and 259.99~ 260

Now, 32% of 260 = 83.2

Now, $\frac{1}{8} of \frac{2}{3}$= (1/8)*(2/3)=1/12

Also, ( $\frac{1}{8} of \frac{2}{3}$ ) of $\frac{3}{5}$ = (1/12) * (3/5) = 1/20
Now, (1/20) 0f 1715= (1/20)*1715 = 85

Here we are approximating 25.05~25, 123.95~124, 388.99~389, 15.001~15.

The question can be rewritten as,

25*123+388*15=8935
Hence the correct option is 8935.

By approximating 561~560, 19.99~20 and 35.05~ 35 for easier calculation,

the question can be written as,

560*(20/35)=320

$15^{2}$*$\sqrt(729)$=$225\times27$=607