Quadratic equation Questions For SBI Clerk PDF
Download SBI Clerk Quadratic Equation Questions & Answers PDF for SBI Clerk Prelims and Mains exam. Very Important SBI Clerk Quadratic Equation questions on with solutions.
Download quadratic equation questions for sbi clerk pdf
490 Banking mocks for Rs. 299 – Enroll here
Instructions
In the following question, two equations are given. You have to solve both the equations & find out the relationship between the variables:
Question 1:Â $10x^2-27x-28=0$
$6y^2-17y-14=0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 2:Â $6x^2-5x+1=0$
$y^2-7y+12=0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Instructions
In the following question, two equations numbered I and II are given. You have to solve both the equations & find out the relationship between the variables:
Question 3:Â $8x^2-10x+3=0$
$6y^2-23y+20=0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Download SBI Clerk Previous Papers PDF
Take a free mock test for SBI Clerk
Question 4:Â $2x^2-17x+35=0$
$12y^2-11y-5=0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 5:Â $x^2-40x+391=0$
$4y^2-180y+2021=0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 6:Â $4x^2-11x-3=0$
$6y^2-29y+35=0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 7:Â $18x^2+3x-28=0$
$30y^2-47y+14=0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Banking Study Material – 18000 Questions
Instructions
In the following question, two equations numbered I and II are given. You have to solve both the equations & find out the relationship between the variables:
Question 8:Â $ 2x^2-11x+15 = 0 $
$ 2y^2-9y+10 = 0 $
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 9:Â $ 15x^2+x-2 = 0 $
$ 20y^2-23y+6 = 0 $
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 10:Â $ x^2-7x+12 = 0 $
$ 8y^2-70y+153 = 0 $
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 11:Â $ 6x^2-11x+3 = 0 $
$ 3y^2-16y+5 = 0 $
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 12:Â $ 15x^2-14x-8 =0 $
$ 10y^2-17y+3 = 0 $
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Instructions
In the following question, two equations numbered I and II are given. You have to solve both the equations & find out the relationship between the variables:
Question 13:Â $2x^2-11x+15 = 0$
$2y^2-7y+6 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 14:Â $6x^2-5x-4 = 0$
$6y^2-11y+4 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 15:Â $12x^2-25x+12 = 0$
$12y^2-11y-5 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 16:Â $12x^2-41x+35 = 0$
$8y^2-14y+5 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 17:Â $9x^2-18x+5 = 0$
$12y^2-19y+5 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Instructions
In the following question, two equations numbered I and II are given. You have to solve both the equations & find out the relationship between the variables:
Question 18:Â $12x^2-19x+5 = 0$
$20y^2-57y+40 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 19:Â $9x^2-15x+4 = 0$
$12y^2-19y+5 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
Question 20:Â $5x^2-11x+2 = 0$
$21y^2+4y-1 = 0$
a)Â $x > y$
b)Â $x \geq y$
c)Â $x < y$
d)Â $x \leq y$
e)Â x = y or No relationship can be established
General Knowledge Questions & Answers PDF
490 Banking mocks for Rs. 299 – Enroll here
Answers & Solutions:
1) Answer (E)
$10x^2-27x-28=0$ can be written as,
$(x-\frac{7}{2})(x+\frac{4}{5})=0$
So $x = \frac{7}{2}$ or $x = -\frac{4}{5}$
$6y^2-17y-14=0$ can be written as,
$(y+\frac{2}{3})(y-\frac{7}{2})=0$
So $y = -\frac{2}{3}$ or $y = \frac{7}{2}$
x = y or No relationship can be established
Hence, option E is the correct choice.
2) Answer (C)
$6x^2-5x+1=0$ can be written as,
$(x-\frac{1}{2})(x-\frac{1}{3})=0$
So $x = \frac{1}{2}$ or $x = \frac{1}{3}$
$y^2-7y+12=0$ can be written as,
$(y-3)(y-4)=0$
So $y = 3$ or $y = 4$
c: $x < y$
Hence, option C is the correct choice.
3) Answer (C)
$8x^2-10x+3=0$ can be written as,
$(x-\frac{1}{2})(x-\frac{3}{4})=0$
So $x = \frac{1}{2}$ or $x = \frac{3}{4}$
$6y^2-23y+20=0$ can be written as,
$(y-\frac{4}{3})(y-\frac{5}{2})=0$
So $y = \frac{4}{3}$ or $y = \frac{5}{2}$
So $x < y$
Hence, option C is the correct choice.
4) Answer (A)
$2x^2-17x+35=0$ can be written as,
$(x-5)(x-\frac{7}{2})=0$
So $x = 5$ or $x = \frac{7}{2}$
$12y^2-11y-5=0$ can be written as,
$(y-\frac{5}{4})(y+\frac{1}{3})=0$
So $y = \frac{5}{4}$ or $y = -\frac{1}{3}$
So $x > y$
Hence, option A is the correct choice.
5) Answer (E)
$x^2-40x+391=0$ can be written as,
$(x-23)(x-17)=0$
So $x = 23$ or $x = 17$
$4y^2-180y+2021=0$ can be written as,
$(y-\frac{47}{2})(y-\frac{43}{2})=0$
So $y = \frac{47}{2}$ or $y = \frac{43}{2}$
So No relation can be established.
Hence, option E is the correct choice.
6) Answer (E)
$4x^2-11x-3=0$ can be written as,
$(x-3)(x+\frac{1}{4})=0$
So $x = 3$ or $x = -\frac{1}{4}$
$6y^2-29y+35=0$ can be written as,
$(y-\frac{5}{2})(y-\frac{7}{3})=0$
So $y = \frac{5}{2}$ or $y = \frac{7}{2}$
So, No relationship can be established
Hence, option E is the correct choice.
7) Answer (E)
$18x^2+3x-28=0$ can be written as,
$(x+\frac{4}{3})(x-\frac{7}{6})=0$
So $x = -\frac{4}{3}$ or $x = \frac{7}{6}$
$30y^2-47y+14=0$ can be written as,
$(y-\frac{7}{6})(y-\frac{2}{5})=0$
So $y = \frac{7}{6}$ or $y = \frac{2}{5}$
So No relation can be established
Hence, option E is the correct choice.
8) Answer (B)
$ 2x^2-11x+15 = 0 $ can be written as $(x-\frac{5}{2})(x-3)= 0 $ therefore, x = $\frac{5}{2}$ or $ 3 $
$ 2y^2-9y+10 = 0 $ can be written as $ (y-\frac{5}{2})(y-2) =0 $
Therefore, y = $\frac{5}{2} $ or $ 2 $
Therefore, $x \geq y$
Hence, option B is the correct answer.
9) Answer (C)
$ 15x^2+x-2 = 0 $ can be written as $(x-\frac{1}{3})(x+\frac{2}{5})= 0 $ therefore, x = $\frac{1}{3}$ or $ \frac{-2}{5} $
$ 20y^2-23y+6 = 0 $ can be written as $ (y-\frac{2}{5})(y-\frac{3}{4}) =0 $
Therefore, y = $\frac{2}{5}$ or $ \frac{3}{4} $
Therefore, $x < y$
Hence, option C is the correct answer.
10) Answer (C)
$ x^2-7x+12 = 0 $ can be written as $(x-4)(x-3)= 0 $ therefore, x = $ 4 $ or $ 3 $
$ 8y^2-70y+153 = 0 $ can be written as $ (y-\frac{9}{2})(y-\frac{17}{4}) =0 $
Therefore, y = $\frac{9}{2} $or $ \frac{17}{4} $
Therefore, $x < y$
Hence, option C is the correct answer.
11) Answer (E)
$ 6x^2-11x+3 = 0 $ can be written as $(x-\frac{3}{2})(x-\frac{1}{3})= 0 $ therefore, x = $\frac{3}{2}$ or $ \frac{1}{3} $
$ 3y^2-16y+5 = 0 $ can be written as $ (y-\frac{1}{3})(y-5) =0 $
Therefore, y = $\frac{1}{3}$ or $ 5 $
Therefore, No relation can be established
Hence, option E is the correct answer.
12) Answer (E)
$ 15x^2-14x-8 =0 $ can be written as $(x-\frac{4}{3})(x+\frac{2}{5})= 0 $ therefore, x = $\frac{4}{3}$ or $ \frac{-2}{5} $
$ 10y^2-17y+3 = 0 $ can be written as $ (y-\frac{1}{5})(y-\frac{3}{2}) =0 $
Therefore, y = $\frac{3}{2}$ or $ \frac{1}{5} $
Therefore, no relation can be established
Hence, option B is the correct answer.
13) Answer (A)
$2x^2-11x+15 = 0$ can be written as $(x-\frac{5}{2})(x-3) = 0$ i.e. x = $\frac{5}{2}$ or $3$
$2y^2-7y+6 = 0$ can be written as $(y-\frac{3}{2})(y-2) = 0$
i.e. y = $\frac{3}{2}$ or $2$
Hence, $x>y$
Hence, option A is the correct answer.
14) Answer (E)
$6x^2-5x-4 = 0$ can be written as $(x+\frac{1}{2})(x-\frac{4}{3}) = 0$ i.e. x = -$\frac{1}{2} or \frac{4}{3}$
$6y^2-11y+4 = 0$ can be written as $(y-\frac{4}{3})(y-\frac{1}{2}) = 0$
i.e. y = $\frac{4}{3} or \frac{1}{2}$
Hence, no relation can be established
Hence, option E is the correct answer.
15) Answer (E)
$12x^2-25x+12 = 0$ can be written as $(x-\frac{3}{4})(x-\frac{4}{3}) = 0$ i.e. x = $\frac{3}{4} or \frac{4}{3}$
$12y^2-11y-5 = 0$ can be written as $(y-\frac{5}{4})(y+\frac{1}{3}) = 0$
i.e. y = $\frac{5}{4} or -\frac{1}{3}$
Hence, no relation can be established.
Hence, option E is the correct answer.
16) Answer (A)
$12x^2-41x+35 = 0$ can be written as $(x-\frac{7}{4})(x-\frac{5}{3}) = 0$ i.e. x = $\frac{7}{4} or \frac{5}{3}$
$8y^2-14y+5 = 0$ can be written as $(y-\frac{5}{4})(y-\frac{1}{2}) = 0$
i.e. y = $\frac{5}{4} or \frac{1}{2}$
Hence, $x > y$
Hence, option A is the correct answer.
17) Answer (E)
$9x^2-18x+5 = 0$ can be written as $(x-\frac{5}{3})(x-\frac{1}{3}) = 0$ i.e. x = $\frac{5}{3} or \frac{1}{3}$
$12y^2-19y+5 = 0$ can be written as $(y-\frac{1}{3})(y-\frac{5}{4}) = 0$
i.e. y = $\frac{1}{3} or \frac{5}{4}$
Hence, No relation can be established
Hence, option E is the correct answer.
18) Answer (D)
$12x^2-19x+5 = 0$ can be written as $(x-\frac{5}{4})(x-\frac{1}{3}) = 0$
i.e. x = $\frac{5}{4} or \frac{1}{3}$
$20y^2-57y+40 = 0$ can be written as $(y-\frac{5}{4})(y-\frac{8}{5}) = 0$
i.e. y = $\frac{5}{4} or \frac{8}{5}$
Hence, $x\leq y$
Hence, option D is the correct answer.
19) Answer (E)
$9x^2-15x+4 = 0$ can be written as $(x-\frac{1}{3})(x-\frac{4}{3}) = 0$ i.e. x = $\frac{1}{3} or \frac{4}{3}$
$12y^2-19y+5 = 0$ can be written as $(y-\frac{1}{3})(y-\frac{5}{4}) = 0$
i.e. y = $\frac{1}{3} or \frac{5}{4}$
Hence, no relation can be established.
Hence, option E is the correct answer.
20) Answer (A)
$5x^2-11x+2 = 0$ can be written as $(x-\frac{1}{5})(x-2) = 0$
i.e. x = $\frac{1}{5} or 2$
$21y^2+4y-1 = 0$ can be written as $(y-\frac{1}{7})(y+\frac{1}{3}) = 0$
i.e. y = $\frac{1}{7} or -\frac{1}{3}$
Hence, $x>y$
Hence, option A is the correct answer.
We hope this Reasoning Question & Answers PDF of SBI Clerk is very Useful for preparation of SBI Clerk Exams.