Quadratic Equation Questions for NMAT – Download [PDF]

0
205
NMAT Quadratic Equation Questions
NMAT Quadratic Equation Questions

Quadratic Equation Questions for NMAT PDF:

Download Quadratic Equation Questions for NMAT PDF. Top 10 very important Quadratic Equation Questions for NMAT based on asked questions in previous exam papers.

Download Quadratic Equation Questions for NMAT

Get 5 NMAT Mocks for Rs. 499

Take NMAT mock test

Question 1: The number of integers that satisfy the equality $(x^{2}-5x+7)^{x+1}=1$ is

a) 3

b) 2

c) 4

d) 5

Question 2: The number of distinct real roots of the equation $(x+\frac{1}{x})^{2}-3(x+\frac{1}{x})+2=0$ equals

Question 3: How many disticnt positive integer-valued solutions exist to the equation $(X^{2}-7x+11)^{(X^{2}-13x+42)}=1$ ?

a) 8

b) 4

c) 2

d) 6

Question 4: If $x^2 + x + 1 = 0$, then $x^{2018} + x^{2019}$ equals which of the following:

a) $x+1$

b) $x$

c) $-x$

d) $x-1$

Question 5: If $U^{2}+(U-2V-1)^{2}$= −$4V(U+V)$ , then what is the value of $U+3V$ ?

a) $0$

b) $\dfrac{1}{2}$

c) $\dfrac{-1}{4}$

d) $\dfrac{1}{4}$

Question 6: If $x+1=x^{2}$ and $x>0$, then $2x^{4}$  is

a) $6+4\sqrt{5}$

b) $3+3\sqrt{5}$

c) $5+3\sqrt{5}$

d) $7+3\sqrt{5}$

Question 7: If $x^{2}$+3x-10is a factor of $3x^{4}+2x^{3}-ax^{2}+bx-a+b-4$ then the closest approximate values of a and b are

a) 25, 43

b) 52, 43

c) 52, 67

d) None of the above

Question 8: If $xy + yz + zx = 0$, then $(x + y + z)^2$ equals

a) $(x + y)^2 + xz$

b) $(x + z)^2 + xy$

c) $x^2 + y^2 + z^2$

d) $2(xy + yz + xz)$

Question 9: If the equation $x^3 – ax^2 + bx – a = 0$ has three real roots, then it must be the case that,

a) b=1

b) b $\neq$ 1

c) a=1

d) a $\neq$ 1

Question 10: If the roots of the equation $x^3 – ax^2 + bx – c = 0$ are three consecutive integers, then what is the smallest possible value of b?[CAT 2008]

a) $\frac{-1}{\sqrt 3}$

b) $-1$

c) $0$

d) $1$

e) $\frac{1}{\sqrt 3}$

Join 7K MBA Aspirants Telegram Group

Download Highly Rated CAT preparation App

Answers & Solutions:

1) Answer (A)

$\left(x^2-5x+7\right)^{x+1}=1$

There can be a solution when $\left(x^2-5x+7\right)=1$ or $x^2-5x\ +6=0$

or x=3 and x=2

There can also be a solution when x+1 = 0 or x=-1

Hence three possible solutions exist.

2) Answer: 1

Let $a=x+\frac{1}{x}$
So, the given equation is $a^2-3a+2=0$
So, $a$ can be either 2 or 1.

If $a=1$, $x+\frac{1}{x}=1$ and it has no real roots.
If $a=2$, $x+\frac{1}{x}=2$ and it has exactly one real root which is $x=1$

So, the total number of distinct real roots of the given equation is 1

3) Answer (D)

$(X^{2}-7x+11)^{(X^{2}-13x+42)}=1$

if $(X^{2}-13x+42)$=0 or $(X^{2}-7x+11)$=1 or $(X^{2}-7x+11)$=-1 and $(X^{2}-13x+42)$ is even number

For X=6,7 the value $(X^{2}-13x+42)$=0

$(X^{2}-7x+11)$=1 for X=5,2.

$(X^{2}-7x+11)$=-1 for X=3,4 and for X=3 or 4, $(X^{2}-13x+42)$ is even number.

.’. {2,3,4,5,6,7} is the solution set of X.

.’. X can take six values.

4) Answer (C)

We know that,

$x^{3} – 1 = (x – 1)(x^{2} + x + 1)$

Since, $x^2 + x + 1 = 0$

$\therefore $ $x^{3} – 1$ = 0

=> $x^{3}$ = 1

Now, $x^{2018} + x^{2019}$

= $(x^{3})^{672} * x^{2}$ + $(x^{3})^{673}$

= $1^{672} * x^{2}$ + $1^{673}$

= $x^{2}$ + 1

= -x

Hence, option C.

5) Answer (C)

Given that $U^{2}+(U-2V-1)^{2}$= −$4V(U+V)$

$\Rightarrow$ $U^{2}+(U-2V-1)(U-2V-1)$= −$4V(U+V)$

$\Rightarrow$ $U^{2}+(U^2-2UV-U-2UV+4V^2+2V-U+2V+1)$ = −$4V(U+V)$

$\Rightarrow$ $U^{2}+(U^2-4UV-2U+4V^2+4V+1)$ = −$4V(U+V)$

$\Rightarrow$ $2U^2-4UV-2U+4V^2+4V+1=−4UV-4V^2$

$\Rightarrow$ $2U^2-2U+8V^2+4V+1=0$

$\Rightarrow$ $2[U^2-U+\dfrac{1}{4}]+8[V^2+\dfrac{V}{2}+\dfrac{1}{16}]=0$

$\Rightarrow$ $2(U-\dfrac{1}{2})^2+8(V+\dfrac{1}{4})^2=0$

Sum of two square terms is zero i.e. individual square term is equal to zero.

$U-\dfrac{1}{2}$ = 0 and $V+\dfrac{1}{4}$ = 0

U = $\dfrac{1}{2}$ and V = $-\dfrac{1}{4}$

Therefore, $U+3V$ = $\dfrac{1}{2}$+$\dfrac{-1*3}{4}$ = $\dfrac{-1}{4}$. Hence, option C is the correct answer.

6) Answer (D)

We know that $x^2 – x – 1=0$
Therefore $x^4 = (x+1)^2 = x^2+2x+1 = x+1 + 2x+1 = 3x+2$
Therefore, $2x^4 = 6x+4$

We know that $x>0$ therefore, we can calculate the value of $x$ to be $\frac{1+\sqrt{5}}{2}$
Hence, $2x^4 = 6x+4 = 3+3\sqrt{5}+4 = 3\sqrt{5}+7$

7) Answer (C)

If $x^{2}$+3x-10is a factor of $3x^{4}+2x^{3}-ax^{2}+bx-a+b-4$
Then x = -5 and x = 2 will give $3x^{4}+2x^{3}-ax^{2}+bx-a+b-4$ = 0
Substituting x = -5 we get,
$3(-5)^{4}+2(-5)^{3}-a(-5)^{2}+b(-5)-a+b-4 = 0$
Solving we get,
$26a+4b = 1621$…….(i)
Substituting x = 2 we get,
$3(2)^{4}+2(2)^{3}-a(2)^{2}+b(2)-a+b-4 =0$
=> $5a-3b = 60$……..(ii)
Solving i and ii we get
a and b $\approx 52, 67$
Hence, option C is the correct answer.

8) Answer (C)

$(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + xz)$
as $xy+yz+xz = 0$
so equation will be resolved to $x^2 + y^2 + z^2$

9) Answer (B)

It can be clearly seen that if b=1 then $x^2(x – a) + (x – a) = 0$ an the equation gives only 1 real value of x

10) Answer (B)

b = sum of the roots taken 2 at a time.
Let the roots be n-1, n and n+1.
Therefore, $b = (n-1)n + n(n+1) + (n+1)(n-1) = n^2 – n + n^2 + n + n^2 – 1$
$b = 3n^2 – 1$. The smallest value is -1.

Get 5 NMAT Mocks for Rs. 499

We hope this Quadratic Equation Questions for NMAT pdf for NMAT exam will be highly useful for your Preparation.

LEAVE A REPLY

Please enter your comment!
Please enter your name here