Polynomial Questions for CAT
Download important Polynomial Questions for CAT PDF based on previously asked questions in CAT exam. Practice Polynomial Questions PDF for CAT exam.
Download Polynomial Questions for CAT
CAT Crash Couse – Sufficient To Crack The Exam
Download CAT Quant Questions PDF
Question 1: If $f_{1}(x)=x^{2}+11x+n$ and $f_{2}(x)=x$, then the largest positive integer n for which the equation $f_{1}(x)=f_{2}(x)$ has two distinct real roots is
Question 2: If $f(x^2 – 1) = x^4 – 7x^2 + k_1$ and $f(x^3 – 2) = x^6 – 9x^3 +k_2$ then the value of $(k_2 – k_1)$ is
a) 6
b) 7
c) 8
d) 9
e) None of the above
Question 3: Let $f(x) = ax^2 – b|x|$ , where a and b are constants. Then at x = 0, f(x) is
[CAT 2004]
a) maximized whenever a > 0, b > 0
b) maximized whenever a > 0, b < 0
c) minimized whenever a > 0, b > 0
d) minimized whenever a > 0, b< 0
Download CAT Quant Questions PDF
Question 4: If $f(x)=x^3-4x+p$ , and f(0) and f(1) are of opposite signs, then which of the following is necessarily true[CAT 2004]
a) -1 < p < 2
b) 0 < p < 3
c) -2 < p < 1
d) -3 < p < 0
Question 5: Let $f(x) = ax^2 + bx + c$, where a, b and c are certain constants and $a \neq 0$ ?It is known that $f(5) = – 3f(2)$. and that 3 is a root of $f(x) = 0$.What is the other root of f(x) = 0?[CAT 2008]
a) -7
b) – 4
c) 2
d) 6
e) cannot be determined
Question 6: Let $f(x) = ax^2 + bx + c$, where a, b and c are certain constants and $a \neq 0$ ?It is known that f(5) = – 3f(2). and that 3 is a root of f(x) = 0.What is the value of a + b + c?[CAT 2008]
a) 9
b) 14
c) 13
d) 37
e) cannot be determined
Question 7: Let $f(x) = x^{2}$ and $g(x) = 2^{x}$, for all real x. Then the value of f[f(g(x)) + g(f(x))] at x = 1 is
a) 16
b) 18
c) 36
d) 40
Download CAT Quant Questions PDF
Answers & Solutions:
1) Answer: 24
$f_{1}(x)=x^{2}+11x+n$ and $f_{2}(x) = x$
$f_{1}(x)=f_{2}(x)$
=> $x^{2}+11x+n = x$
=> $ x^2 + 10x + n = 0 $
=> For this equation to have distinct real roots, b$^2$-4ac>0
$ 10^2 > 4n$
=> n < 100/4
=> n < 25
Thus, largest integral value that n can take is 24.
2) Answer (C)
$f(x^2 – 1) = x^4 – 7x^2 + k_1$
Put $x^2 = 1$ to make it 0
=> $f(0) = (1)^2 – 7(1) + k_1 = k_1 – 6$ ——–(i)
Also, $f(x^3 – 2) = x^6 – 9x^3 +k_2$
Put $x^3 = 2$
=> $f(0) = (2)^2 – 9(2) + k_2 = k_2 – 14$ ———–(ii)
Equating (i) & (ii), we get :
=> $k_1 – 6 = k_2 – 14$
=> $k_2 – k_1 = 14 – 6 = 8$
3) Answer (D)
$f(x) = ax^2 – b|x|$. When $x=0, f(x) = 0$
When $a > 0$ and $b < 0$,
For x > 0, $f(x) = ax^2 – bx$, will be greater than 0 as $ax^2 > 0$ and $bx<0$ as $b$ is negative and $x$ is positive.
For x < 0, $f(x) = ax^2 + bx$ will again be greater than 0 as $ax^2 >0$ and $bx>0$ as both $b$ and $x$ are negative.
Therefore, the function $f(x)$ is positive when $x<0$ and when $x>0$ but becomes 0 when $x=0$.
Therefore, for $a > 0$ and $b < 0$, f(x) will attain its minimum value at $x = 0$.
Free CAT Practice – Study Material
Download CAT Quant Formulas PDF
4) Answer (B)
f(1) = 1-4+p = p-3
f(0) = p
Since they are of opposite signs, p(p-3) < 0
=> 0 < p < 3
5) Answer (B)
f(3) = 9a + 3b + c = 0 f(5) = 25a + 5b + c
f(2) = 4a + 2b + c
f(5) = -3f(2) => 25a + 5b + c = -12a -6b -3c
=> 37a + 11b + 4c = 0 –> (1)
4(9a + 3b + c) = 36a + 12b + 4c = 0 –> (2)
From (1) and (2), a – b = 0 => a = b
=> c = -12a
The equation is, therefore, $ax^2 + ax – 12a = 0 => x^2 + x – 12 = 0$
=> -4 is a root of the equation.
6) Answer (E)
f(3) = 9a + 3b + c = 0 f(5) = 25a + 5b + c
f(2) = 4a + 2b + c
f(5) = -3f(2) => 25a + 5b + c = -12a -6b -3c
=> 37a + 11b + 4c = 0 –> (1)
4(9a + 3b + c) = 36a + 12b + 4c = 0 –> (2)
From (1) and (2), a – b = 0 => a = b
=> c = -12a
The equation is, therefore, $ax^2 + ax – 12a = 0 => x^2 + x – 12 = 0$
a + b + c = a + a – 12a = -10a.
But the value of a is not given. Therefore, the value cannot be determined.
7) Answer (C)
$f[f(g(1)) + g(f(1))]$
= $f[f(2^1) + g(1^2)]$
= $f[f(2) + g(1)]$
= $f[2^2 + 2^1]$
= $f(6)$
= $6^2 = 36$
Download CAT Previous Papers PDF
Download Free CAT Preparation App
We hope this Polynomial Questions PDF for CAT with Solutions will be helpful to you.