0
2331

# Odd One Out Questions For SSC GD PDF

SSC GD Constable Odd One Out Question and Answers download PDF based on previous year question paper of SSC GD exam. 40 Very important Odd One Out questions for GD Constable.

Instructions

In the following questions, find the odd number/letters /word pair from the given alternatives.

Question 1:

a) 12 – 27

b) 43 – 343

c) 37 – 1000

d) 41 – 8

Question 2:

a) 20 – 81

b) 12 – 36

c) 34 – 289

d) 42 – 441

Question 3:

a) 47 – 22

b) 34 – 14

c) 28 – 20

d) 39 – 26

Question 4:

a) 46 – 4

b) 23 – 16

c) 17 – 36

d) 14 – 9

Question 5:

a) 24 – 3

b) 82 – 5

c) 48 – 7

d) 17 – 4

Question 6:

a) 43 – 14

b) 38 – 22

c) 42 – 12

d) 21 – 8

Question 7:

a) 37 – 25

b) 24 – 9

c) 20 – 4

d) 17 – 16

Question 8:

a) 43 – 32

b) 31 – 16

c) 12 – 9

d) 11 – 4

Question 9:

a) 42 – 6

b) 81 – 9

c) 23 – 4

d) 34 – 7

Question 10:

a) 22 – 121

b) 14 – 64

c) 34 – 289

d) 18 – 81

Question 11:

a) 17 – (-1)

b) 23 – 2

c) 49 – 23

d) 27 – 5

Question 12:

a) 14 – 9

b) 23 – 36

c) 42 – 64

d) 52 – 100

Question 13:

a) 24 – 216

b) 13 – 64

c) 17 – 512

d) 21 – 8

Question 14:

a) 17 – 64

b) 23 – 25

c) 12 – 16

d) 19 – 100

Question 15:

a) 4 : 8

b) 12 : 36

c) 14 : 168

d) 9 : 63

Question 16:

a) 3 – 22

b) 13 – 14

c) 2 – 25

d) 6 – 21

Question 17:

a) 16 – 219

b) 14 – 179

c) 23 – 520

d) 24 – 556

Instructions

In the following question, four groups of three numbers are given. In each group the third number is related to the first and second numbers by a Logic/Rule/Relation. Three are similar on basis of same Logic/Rule/Relation. Select the odd one out from the given alternatives.

Question 18:

a) (16,24,42)

b) (34,81,61)

c) (14,23,25)

d) (18,72,81)

Question 19:

a) (12,26,78)

b) (36,4,36)

c) (14,16,56)

d) (32,22,64)

Question 20:

a) (36,12,20)

b) (14,18,16)

c) (24,16,20)

d) (20,8,14)

Question 21:

a) (24,16,85)

b) (35,42,59)

c) (24,15,72)

d) (17,21,29)

Question 22:

a) (19,28,10)

b) (21,14,2)

c) (22,26,6)

d) (17,28,9)

Question 23:

a) (12,26,24)

b) (14,27,45)

c) (18,42,54)

d) (36,29,97)

Question 24:

a) (16,18,48)

b) (21,42,14)

c) (14,29,72)

d) (15,32,30)

Question 25:

a) (24,32,14)

b) (36,12,15)

c) (28,14,20)

d) (26,18,20)

Question 26:

a) (5,8,27)

b) (12,6,54)

c) (7,9,47)

d) (16,3,27)

Question 27:

a) (27,34,16)

b) (39,21,12)

c) (8,14,13)

d) (12,18,12)

Question 28:

a) (24,8,22)

b) (20,4,18)

c) (12,18,42)

d) (14,2,11)

Question 29:

a) (6,8,16)

b) (4,12,14)

c) (14,22,36)

d) (24,26,61)

Question 30:

a) (4,7,22)

b) (14,18,62)

c) (4,6,20)

d) (9,12,42)

Question 31:

a) (16,18,17)

b) (22,14,18)

c) (12,24,18)

d) (2,8,6)

Instructions

In the following question, four groups of three numbers are given. In each group the third number is related to the first and second numbers by a Logic/Rule/Relation. Three are similar on basis of same Logic/Rule/Relation. Select the odd one out from the given alternatives.

Question 32:

a) (4,7,27)

b) (3,5,16)

c) (9,3,26)

d) (4,8,31)

Question 33:

a) (7,12,65)

b) (3,7,11)

c) (8,4,20)

d) (4,7,15)

Instructions

In each of the following questions, find the odd word/letters/number pair from the given alternatives.

Question 34:

a) BYZ

b) DVX

c) XCD

d) GTU

Question 35:

a) FHT

b) LMN

c) BCX

d) TUF

Question 36:

a) ZXY

b) DEC

c) HFG

d) LJK

Question 37:

a) DV

b) XB

c) LN

d) GU

Question 38:

a) BAC

b) TSU

c) WUX

d) GFH

Question 39:

a) FEC

b) IJH

c) MNL

d) UVT

Question 40:

a) BDG

b) LNP

c) ACF

d) DGJ

$12 → (1+2)^3 = 3^3 = 27$
$43 → (4+3)^3 = 7^3 = 343$
$37 → (3+7)^3 = 10^3 = 1000$
$41 → (4+1)^3 = 5^3 = 125$

$12 → (12/2)^2 = 6^2 = 36$
$34 → (34/2)^2 = 17^2 = 289$
$42 → (42/2)^2 = 21^2 = 441$
Hence, Option A should be
$20 → (20/2)^2 = 10^2 = 100$ but not 81.
Hence, Option A is correct answer

47 → 4+7 = 11 → 2*11 = 22
34 → 3+4 = 7 → 2*7 = 14
28 → 2+8 = 10 → 2*10 = 20
39 → 3+9 = 12. 2*12 = 24 but not 26.
Hence, Option D is correct answer.

46 → Difference = 2. $2^2 = 4$
23 → Difference = 1. $1^2 = 1$ but not 16
17 → Difference = 6. $6^2 = 36$
14 → Difference = 3. $3^2 = 9$
Hence, Option B is correct answer.

24 → (2+4)/2 = 6/2 = 3
82 → (8+2)/2 = 10/2 = 5
48 → (4+8)/2 = 12/2 = 6 but not 7
17 → (1+7)/2 = 8/2 = 4
Hence, Option C is correct answer.

43 → 4+3 = 7. 7*2 = 14
38 → 3+8 = 11. 11*2 = 22
42 → 4+2 = 6. 6*2 = 12
21 → 2+1 = 3. 3*2 = 6 but not 8.
Hence, Option D is correct answer.

$37 → 3+7 = 10 → (10/2)^2$ = 25
$24 → 2+4 = 6 → (6/2)^2$ = 9
$20 → 2+0 = 2 → (2/2)^2$ = 1 but not 4
$17 → 1+7 = 8 → (8/2)^2$ = 16
Hence, Option C is correct answer.

$43 → (4+3)^2 = 7^2 = 49$
$31 → (3+1)^2 = 4^2 = 16$
$12 → (1+2)^2 = 3^2 = 9$
$11 → (1+1)^4 = 2^2 = 4$
Hence, Option A is correct answer.

42 → 4+2 = 6
81 → 8+1 = 9
23 → 2+3 = 5 but not 4
34 → 3+4 = 7. Hence, Option C is correct answer.

$121 = (22/2)^2 = 11^2$
$289 = (34/2)^2 = 17^2$
$81 = (18/2)^2 = 9^2$
But in Option B, $(14/2)^2 = 7^2 = 49$ but not 64.
Hence, Option B is correct answer.

17 → (1*7)-(1+7) = 1.
23 → (2*3)-(2+3) = 1 but not 2.
49 → (4*9)-(4+9) = 23
27 → (2*7)-(2+7) = 5.
Hence, Option B is correct answer

$23 → (2*3)^2 = 6^2 = 36$
$42 → (4*2)^2 = 8^2 = 64$
$52 → (5*2)^2 = 10^2 = 100$
But in Option A,
$14 → (1*4)^2 = 4^2 = 16$ but not 9.
Hence, Option A is correct answer.

$24$ → $(2+4)^3 = 6^3 = 216$
$13$ → $(1+3)^3 = 4^3 = 64$
$17$ → $(1+7)^3 = 8^3 = 512$
$21$ → $(2+1)^3 = 3^3 = 27$ but not $8$
Hence, Option D is correct answer.

17 → $(1+7)^2 = 8^2 = 64$
23 → $(2+3)^2 = 5^2 = 25$
12 → $(1+2)^2 = 3^2 = 9$ but not 16
19 → $(1+9)^2 = 10^2 = 100$.
Hence, Option C is correct answer.

All the given number pairs are in the form of $x : (x\times(x-2))$
$4 : 8 → 4 : (4\times(4-2)) = 4 : (4\times2) = 4 : 8$
$12 : 36 → 12 : (12\times(12-2)) = 12 : (12\times10) = 12 : 120$ but not $12 : 36$
$14 : 168 → 14 : (14\times(14-2)) = 14 : (14\times12) = 14 : 168$
$9 : 63 → 9 : (9\times(9-2)) = 9 : (9\times7) = 9 : 63$
Hence, Option B is correct answer.

Consider given numbers as place values of English alphabets.
Option B → 13 – 14 → M – N
Option C → 2 – 25 → B – Y
Option D → 6 – 21 → F – U.
Here, all these pairs have alphabets opposite to each other.
But in Option A → 3 – 22 → C – V. Here, C and V are not opposite to each other.
Hence, Option A is correct answer.

$16^2 – (1^2+6^2) = 256 – (1+36) = 256 – 37 = 219$
$14^2 – (1^2+4^2) = 196 – 17 = 179$
$23^2 – (2^2+3^2) = 529 – 13 = 516$ but not 520.
$24^2 – (2^2+4^2) = 576 – 20 = 556$
Hence, Option C is correct answer.

16,24 → (1+6)*(2+4) = 7*6 = 42
34,81 → (3+4)*(8+1) = 7*9 = 63 but not 61
14,23 → (1+4)*(2+3) = 5*5 = 25
18,72 → (1+8)*(7+2) = 9*9 = 81.
Hence, Option B is correct answer.

12/2 = 6. 26/2 = 13. 6*13 = 78
36/2 = 18. 4/2 = 2. 18*2 = 36
14/2 = 7. 16/2 = 8. 7*8 = 56
32/2 = 16. 22/2 = 11. 16*11 = 176 not 64.
Hence, Option D is correct answer.

36/2 = 18, 12/2 = 6. 18+6 = 24 but not 20
14/2 = 7. 18/2 = 9. 7+9 = 16
24/2 = 12, 16/2 = 8. 12+8 = 20
20/2 = 10, 8/2 = 4, 10+4 = 14.
Hence, Option A is correct answer.

24,16 → Writing 16 in reverse → 61. 24+61 = 85
35,42 → Writing 42 in reverse → 24. 35+24 = 59
24,15 → Writing 15 in reverse → 51. 24+51 = 75 but not 72
17,21 → Writing 21 in reverse → 12. 17+12 = 29
Hence, Option C is correct answer.

19,28 → 1+9+2+8 = 20. 20/2 = 10
21,14 → 2+1+1+4 = 8. 8/2 = 4 but not 2
22,26 → 2+2+2+6 = 12. 12/2 = 6
17,28 → 1+7+2+8 = 18. 18/2 = 9
Hence, Option B is correct answer.

12,26 → (1+2)*(2+6) = 3*8 = 24
14,27 → (1+4)*(2+7) = 5*9 = 45
18,42 → (1+8)*(4+2) = 9*6 = 54
36,29 → (3+6)*(2+9) = 9*11 = 99 but not 97.
Hence, Option D is correct answer.

16,18 → 1*6*1*8 = 48
21,42 → 2*1*4*2 = 16 but not 14
14,29 → 1*4*2*9 = 72
15,32 → 1*5*3*2 = 30

24,32 → 2*4+3*2 = 8+6 = 14
36,12 → 3*6+1*2 = 18+2 = 20 but not 15
28,14 → 2*8+1*4 = 16+4 = 20
26,18 → 2*6+1*8 = 12+8 = 20
Hence, Option B is correct answer.

(5*8)-(5+8) = 40-13 = 27
(12*6)-(12+6) = 72-18 = 54
(7*9)-(7+9) = 63-16 = 47
(16*3)-(16+3) = 48-19 = 29 but not 27.
Hence, Option D is correct answer.

27,34 → 2+7+3+4 = 16
39,21 → 3+9+2+1 = 15 but not 12
8,14 → 8+1+4 = 13
12,18 → 1+2+1+8 = 12.
Hence, Option B is correct answer.

$\frac{24}{2}+8\times2 = 12+16 = 28$ but not 22
$\frac{20}{2}+4\times2 = 10+8 = 18$
$\frac{12}{2}+18\times2 = 6+36 = 42$
$\frac{14}{2}+2\times2 = 7+4 = 11$
Hence, Option A is correct answer.

$6\times2+\frac{8}{2} = 12+4 = 16$
$4\times2+\frac{12}{2} = 8+6 = 14$
$14\times2+\frac{22}{2} = 28+11 = 39$ but not 36
$24\times2+\frac{26}{2} = 48+13 = 61$
Hence, Option C is correct answer.

4*2+7*2 = 8+14 = 22
14*2+18*2 = 28+36 = 64 but not 62
4*2+6*2 = 8+12 = 20
9*2+12*2 = 18+24 = 42. Hence, Option B is correct answer.

$\frac{16}{2}+\frac{18}{2} = 8+9 = 17$
$\frac{22}{2}+\frac{14}{2} = 11+7 = 18$
$\frac{12}{2}+\frac{24}{2} = 6+12 = 18$
$\frac{2}{2}+\frac{8}{2} = 1+4 = 5$ but not 6. Hence, Option D is correct answer.

(4*7)-1 = 28-1 = 27
(3*5)-1 = 15-1 = 14 but not 16
(9*3)-1 = 27-1 = 26
(4*8)-1 = 32-1 = 31.
Hence, Option B is correct answer.

(7*12)-(7+12) = 84-19 = 65
(3*7)-(3+7) = 21-10 = 11
(8*4)-(8+4) = 32-12 = 20
(4*7)-(4+7) = 28-11 = 17 but not 15.
Hence, Option D is correct answer.

The opposite letter of B is Y. Y+1 = Z.
The opposite letter of X is C. C+1 = D.
The opposite letter of G is T. T+1 = U.
But in DVX, The opposite letter of D is not V. Hence, DVX is odd.

L+1 = M. The opposite letter of M is N.
B+1 = C. The opposite letter of C is X.
T+1 = U. The opposite letter of U is F.
But in FHT, F+2 = H and T is not opposite letter of H.
Hence, FHT is odd.

Z-2 = X, X+1 = Y
D+1 = E, E-2 = C
H-2 = F, F+1 = G
L-2 = J, J+1 = K
From the above equations, DEC is different from the other three. Hence, DEC is odd.

The opposite letter of D is W. W-1 = V. → DV
The opposite letter of X is C. C-1 = B. → XB
The opposite letter of L is O. O-1 = N → LN
The opposite letter of G is T. T+1 = U. → GU.
Here, GU is different from other three alphabets.
Hence, GU is odd.

B-1 = A, A+2 = C → BAC
T-1 = S, S+2 = U → TSU
W-2 = U, U+3 = X → WUX
G-1 = F, F+2 = H → GFH
From the above equations, WUX is odd.

F-1 = E. E-2 = C → FEC
I+1 = J, J-2 = H → IJH
M+1 = N, N-2 = L → MNL
U+1 = V, V-2 = T → UVT
From the above equations, FEC is odd.