0
2091

High Level Simplification Questions For SBI PO PDF

High Level Pipes And Cistern Questions for SBI PO Prelims and Mains exam. Download SBI PO High Level Pipes And Cistern questions on with solutions.

Instructions

In the following questions, find the approximate value that will replace the question mark (?). (You are not required to calculate the exact value.)

Question 1:Â $\sqrt[4]{1020}*\sqrt{7.98} = \sqrt{63.89} + \sqrt[3]{?}$

a)Â 2

b)Â 8

c)Â 729

d)Â 10

e)Â 512

Question 2:Â $\frac{\sqrt{360} – \sqrt{290}}{\sqrt{620} – \sqrt{575}} + \frac{\sqrt[3]{730}-\sqrt[3]{510}}{\sqrt[3]{999}-\sqrt[3]{215}} = ?$

a)Â 2

b)Â 2.25

c)Â 3

d)Â 2.75

e)Â 3.25

Question 3:Â $\sqrt{\frac{24.97}{100} * 27.94 + 2*2.99^2} = ?$

a)Â $4$

b)Â $6$

c)Â $7$

d)Â $5$

e)Â $3$

Question 4:Â $19.98$% of $799.42$ + $\sqrt{?}$ = $12.99^2$

a)Â $9$

b)Â $13$

c)Â $160$

d)Â $81$

e)Â $90$

Instructions

Which value should replace $?$ in the following questions?

Question 5:Â $\frac{69.97*\sqrt{170.84} + 19.89*\sqrt{145}}{50.84}$ = ?

a)Â 25

b)Â 29

c)Â 21

d)Â 27

e)Â 23

Question 6:Â $\frac{\sqrt{49.97}*\sqrt{99.94}*\sqrt{143}}{\sqrt{440}}$ = ?

a)Â 35

b)Â 42

c)Â 40

d)Â 49

e)Â 50

Question 7:Â $34.93$% of $598$ + $118.37$% of $25$ – $63$% of $79.94$ = ?

a)Â 200

b)Â 190

c)Â 210

d)Â 180

e)Â 220

Question 8:Â $22 + \frac{(423 – 174)}{3} * 7 -3$ = ?

a)Â 570

b)Â 580

c)Â 590

d)Â 600

e)Â 610

Question 9:Â $6\frac{5}{8} + 8\frac{7}{12} + 12\frac{19}{24}$ = ?

a)Â 28

b)Â 26

c)Â 27

d)Â 29

e)Â 25

Question 10:Â $\frac{34.84*\sqrt{2.02}}{\sqrt{97}}$ = ?

a)Â 2

b)Â 4

c)Â 5

d)Â 3

e)Â 6

Question 11:Â $\frac{1.98 * 128.34}{\sqrt{63.14}} + \frac{3.07*\sqrt{779}}{\sqrt{7000}}$ = ?

a)Â 31

b)Â 35

c)Â 29

d)Â 38

e)Â 33

Question 12:Â $79.87$% of $290.9$ – $59.89$ % of $371.24$ = ?

a)Â 15

b)Â 10

c)Â 7

d)Â 18

e)Â 12

Question 13:Â $\frac{\sqrt{360}*169.8}{37.82}$ = ?

a)Â 82

b)Â 88

c)Â 92

d)Â 85

e)Â 79

Question 14:Â $37.94$ % of $190$ + $43.89$ % of $49.98$ = ?

a)Â 90

b)Â 88

c)Â 98

d)Â 94

e)Â 86

Question 15:Â $\frac{12.92*23.97}{\sqrt{678}}$ = ?

a)Â 10

b)Â 11

c)Â 12

d)Â 13

e)Â 14

Question 16:Â $\frac{\sqrt{17.96*1.97}}{2.96} *98.92$ = x

a)Â 198

b)Â 192

c)Â 205

d)Â 212

e)Â 189

Question 17:Â $\frac{15.94 * \sqrt{ 28^2 – 49.62*5.99}}{31.97}$ = ?

a)Â 9

b)Â 11

c)Â 13

d)Â 15

e)Â 17

Question 18:Â What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$50.011 – \frac{35.996}{42.007} *48.998$

a)Â $6$

b)Â $7$

c)Â $8$

d)Â $9$

e)Â $10$

Instructions

What approximate value will come in place of the question mark (?) in the following equations ?

Question 19:Â $1679 + 14.95 \times 5.02 = ?$

a)Â 540

b)Â 525

c)Â 545

d)Â 565

e)Â 520

Instructions

Find the approximate value of the number which should replace (?) in the following questions.

Question 20:Â $11.95 \times \sqrt {2020} + 14.05 \times \sqrt{1230} = ?$

a)Â 1050

b)Â 1010

c)Â 1020

d)Â 1040

e)Â 1030

Answers & Solutions:

1)Â AnswerÂ (E)

The given expression can be simplified as follows:

$\sqrt[4]{1020}*\sqrt{7.98} = \sqrt{63.89} + \sqrt[3]{?}$
=> $\sqrt[4]{1024}*\sqrt{8} = \sqrt{64} + \sqrt[3]{?}$
$4\sqrt{2}*2\sqrt{2} = 8 + \sqrt[3]{?}$
$16 = 8 + \sqrt[3]{?}$
=> $\sqrt[3]{?} = 8$
$? = 512$
Therefore, option E is the right answer.

2)Â AnswerÂ (B)

The given expression can be simplified as follows:
$\frac{\sqrt{360} – \sqrt{290}}{\sqrt{620} – \sqrt{575}} + \frac{\sqrt[3]{730}-\sqrt[3]{510}}{\sqrt[3]{999}-\sqrt[3]{215}} = \frac{\sqrt{361} – \sqrt{289}}{\sqrt{625} – \sqrt{576}} + \frac{\sqrt[3]{729}-\sqrt[3]{512}}{\sqrt[3]{1000}-\sqrt[3]{216}}$
= $\frac{19 – 17}{25-24} + \frac{9-8}{10-6}$
=$2+\frac{1}{4}$
=$2.25$
Therefore, option B is the right answer.

3)Â AnswerÂ (D)

The given expression can be simplified as follows:

$\sqrt{\frac{24.97}{100} *27.94 + 2*2.99^2} = \sqrt{\frac{25}{100} *28 + 2*3^2}$
= $\sqrt{7+18}$
=$\sqrt{25}$
=$5$.
Therefore, option D is the right answer.

4)Â AnswerÂ (D)

$19.98$% of $799.42$ + $\sqrt{?}$ = $12.99^2$
The given expression can be simplified as follows:
$20$% of $800$ + $\sqrt{?}$ = $13^2$
$160 + \sqrt{?}$ = $169$
=> $\sqrt{?} = 9$
$? = 81$
Therefore, option D is the right answer.

5)Â AnswerÂ (E)

The given expression can be simplified as follows:
$\frac{69.97*\sqrt{170.84} + 19.89*\sqrt{145}}{50.84}$ = $\frac{70*\sqrt{169} + 20*\sqrt{144}}{50}$
= $\frac{70*13 + 20*12}{50}$
=$\frac{910+240}{50}$
=$\frac{1150}{50}$
=$23$.

Therefore, option E is the right answer.

6)Â AnswerÂ (C)

The given expression can be simplified as follows:
$\frac{\sqrt{49.97}*\sqrt{99.94}*\sqrt{143}}{\sqrt{440}}$ = $\frac{\sqrt{49}*\sqrt{100}*\sqrt{144}}{\sqrt{441}}$
= $\frac{7*10*12}{21}$
=$40$
Therefore, option C is the right answer.

7)Â AnswerÂ (B)

The given expression can be simplified as follows:

$34.93$% of $598$ + $118.37$% of $25$ – $63$% of $79.94$ = $35$% of $600$ + $120$% of $25$ – $62.5$% of $80$
= $210$ + $30$ – $50$
= $190$
Therefore, option B is the right answer.

8)Â AnswerÂ (D)

The given expression can be simplified as follows:
$22 + \frac{(423 – 174)}{3} * 7 -3$ = $22 + \frac{(249)}{3} * 7 -3$
= $22 + 83 * 7 -3$
= $22 + 581- 3$
= $600$
Therefore, option D is the right answer.

9)Â AnswerÂ (A)

The given expression can be simplified as follows:

$6\frac{5}{8} + 8\frac{7}{12} + 12\frac{19}{24}$ = $6 + 8 + 12 + \frac{5}{8} + \frac{7}{12} + \frac{19}{24}$
= $26 + \frac{15+14+19}{24}$
= $26 + \frac{48}{24}$
= $28$

10)Â AnswerÂ (C)

The given expression can be simplified as follows:

$\frac{34.84*\sqrt{2.02}}{\sqrt{97}}$ = $\frac{35*\sqrt{2}}{\sqrt{98}}$
= $\frac{35*\sqrt{2}}{7\sqrt{2}}$
= $5$
Therefore, option C is the right answer.

11)Â AnswerÂ (E)

The given expression can be simplified as follows:

$\frac{1.98 * 128.34}{\sqrt{63.14}} + \frac{3.07*\sqrt{779}}{\sqrt{7000}}$ = $\frac{2 * 128}{\sqrt{64}} + \frac{3*\sqrt{779}}{\sqrt{7011}}$
=$\frac{2 * 128}{\sqrt{64}} + \frac{3*\sqrt{779}}{3*\sqrt{779}}$
= $32+1$
= $33$.

Therefore, option E is the right answer.

12)Â AnswerÂ (B)

The given expression can be simplified as follows:
$79.87$% of $290.9$ – $59.89$ % of $371.24$ = $80$% of $290$ -$60$ % of $370$
= $232- 222$
=$10$.
Therefore, option B is the right answer.

13)Â AnswerÂ (D)

The given expression can be simplified as follows:

$\frac{\sqrt{360}*169.8}{37.82}$ = $\frac{\sqrt{361}*169.8}{38}$
= $\frac{19*169.8}{38}$ = $85$

Therefore, option D is the right answer.

14)Â AnswerÂ (D)

The given expression can be simplified as follows:

$37.94$ % of $190$ + $43.89$ % of $49.98$ = $38$% of $190$ + $44$ % of $50$
= $72$ + $22$
= $94$.

Therefore, option D is the right answer.

15)Â AnswerÂ (C)

The given expression can be simplified as follows:

$\frac{12.92*23.97}{\sqrt{678}}$ = $\frac{13*24}{\sqrt{676}}$
= $\frac{13*24}{26}$
=$12$

Therefore, option C is the right answer.

16)Â AnswerÂ (A)

The given expression can be simplified as $\frac{\sqrt{18*2}}{3} *99$
= $\frac{\sqrt{36}}{3} *99$
=$\frac{6}{3}*99$
=$198$

Therefore, option A is the right answer.

17)Â AnswerÂ (B)

The given expression can be simplified as $\frac{16 * \sqrt{ 784 – 50*6}}{32}$
= $\frac{ \sqrt{ 484}}{2}$
=$\frac{22}{2}$ = $11$.
Therefore, option B is the right answer.

18)Â AnswerÂ (C)

The given expression can be simplified as $50 – \frac{36}{42} *49$
=$50 – \frac{6}{7} *49$
=$50 – 42$
= $8$.
Therefore, option C is the right answer.

19)Â AnswerÂ (D)

$1679 + 14.95 \times 5.02$ can be simplified as
$1680 + 15\times 5$
= 1680+75
= 1755

20)Â AnswerÂ (E)

The following approximations can applied to each of the terms of the expression.

$11.95 \approx 12$
$\sqrt{2020} \approx \sqrt{2025} = 45$
$\sqrt{1230} \approx \sqrt{1225} = 35$
$14.05 \approx 14$

Hence, the given expression can be simplified to

$12 \times 45 + 14 \times 35 = 540 + 490 = 1030$

We Hope this High Level Simplification Questions for SBI PO Exam Preparation is very Useful.