High Level Simplification Questions For SBI PO PDF
High Level Pipes And Cistern Questions for SBI PO Prelims and Mains exam. Download SBI PO High Level Pipes And Cistern questions on with solutions.
Download High Level Simplification Questions For SBI PO PDF
105 SBI PO Mocks – Just Rs. 249
Instructions
In the following questions, find the approximate value that will replace the question mark (?). (You are not required to calculate the exact value.)
Question 1:Â $\sqrt[4]{1020}*\sqrt{7.98} = \sqrt{63.89} + \sqrt[3]{?}$
a)Â 2
b)Â 8
c)Â 729
d)Â 10
e)Â 512
Question 2:Â $\frac{\sqrt{360} – \sqrt{290}}{\sqrt{620} – \sqrt{575}} + \frac{\sqrt[3]{730}-\sqrt[3]{510}}{\sqrt[3]{999}-\sqrt[3]{215}} = ?$
a)Â 2
b)Â 2.25
c)Â 3
d)Â 2.75
e)Â 3.25
Question 3:Â $\sqrt{\frac{24.97}{100} * 27.94 + 2*2.99^2} = ?$
a)Â $4$
b)Â $6$
c)Â $7$
d)Â $5$
e)Â $3$
Question 4:Â $19.98$% of $799.42$ + $\sqrt{?}$ = $12.99^2$
a)Â $9$
b)Â $13$
c)Â $160$
d)Â $81$
e)Â $90$
Instructions
Which value should replace $?$ in the following questions?
Question 5:Â $\frac{69.97*\sqrt{170.84} + 19.89*\sqrt{145}}{50.84}$ = ?
a)Â 25
b)Â 29
c)Â 21
d)Â 27
e)Â 23
SBI PO Free Mock Test (Latest Pattern)
Download SBI PO Previous Papers PDF
Question 6:Â $\frac{\sqrt{49.97}*\sqrt{99.94}*\sqrt{143}}{\sqrt{440}}$ = ?
a)Â 35
b)Â 42
c)Â 40
d)Â 49
e)Â 50
Question 7:Â $34.93$% of $598$ + $118.37$% of $25$ – $63$% of $79.94$ = ?
a)Â 200
b)Â 190
c)Â 210
d)Â 180
e)Â 220
Question 8:Â $ 22 + \frac{(423 – 174)}{3} * 7 -3$ = ?
a)Â 570
b)Â 580
c)Â 590
d)Â 600
e)Â 610
Question 9:Â $6\frac{5}{8} + 8\frac{7}{12} + 12\frac{19}{24}$ = ?
a)Â 28
b)Â 26
c)Â 27
d)Â 29
e)Â 25
Question 10:Â $\frac{34.84*\sqrt{2.02}}{\sqrt{97}}$ = ?
a)Â 2
b)Â 4
c)Â 5
d)Â 3
e)Â 6
SBI PO Important Questions (download PDF)
Question 11:Â $\frac{1.98 * 128.34}{\sqrt{63.14}} + \frac{3.07*\sqrt{779}}{\sqrt{7000}}$ = ?
a)Â 31
b)Â 35
c)Â 29
d)Â 38
e)Â 33
Question 12:Â $79.87$% of $290.9$ – $59.89$ % of $371.24$ = ?
a)Â 15
b)Â 10
c)Â 7
d)Â 18
e)Â 12
Question 13:Â $\frac{\sqrt{360}*169.8}{37.82}$ = ?
a)Â 82
b)Â 88
c)Â 92
d)Â 85
e)Â 79
Question 14:Â $37.94$ % of $190$ + $43.89$ % of $49.98$ = ?
a)Â 90
b)Â 88
c)Â 98
d)Â 94
e)Â 86
Question 15:Â $\frac{12.92*23.97}{\sqrt{678}}$ = ?
a)Â 10
b)Â 11
c)Â 12
d)Â 13
e)Â 14
Question 16:Â $\frac{\sqrt{17.96*1.97}}{2.96} *98.92$ = x
a)Â 198
b)Â 192
c)Â 205
d)Â 212
e)Â 189
Question 17:Â $\frac{15.94 * \sqrt{ 28^2 – 49.62*5.99}}{31.97}$ = ?
a)Â 9
b)Â 11
c)Â 13
d)Â 15
e)Â 17
Question 18:Â What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$50.011 – \frac{35.996}{42.007} *48.998$
a)Â $6$
b)Â $7$
c)Â $8$
d)Â $9$
e)Â $10$
Instructions
What approximate value will come in place of the question mark (?) in the following equations ?
Question 19:Â $1679 + 14.95 \times 5.02 = ?$
a)Â 540
b)Â 525
c)Â 545
d)Â 565
e)Â 520
Instructions
Find the approximate value of the number which should replace (?) in the following questions.
Question 20:Â $11.95 \times \sqrt {2020} + 14.05 \times \sqrt{1230} = ?$
a)Â 1050
b)Â 1010
c)Â 1020
d)Â 1040
e)Â 1030
Answers & Solutions:
1) Answer (E)
The given expression can be simplified as follows:
$\sqrt[4]{1020}*\sqrt{7.98} = \sqrt{63.89} + \sqrt[3]{?}$
=> $\sqrt[4]{1024}*\sqrt{8} = \sqrt{64} + \sqrt[3]{?}$
$4\sqrt{2}*2\sqrt{2} = 8 + \sqrt[3]{?}$
$16 = 8 + \sqrt[3]{?}$
=> $\sqrt[3]{?} = 8$
$ ? = 512$
Therefore, option E is the right answer.
2) Answer (B)
The given expression can be simplified as follows:
$\frac{\sqrt{360} – \sqrt{290}}{\sqrt{620} – \sqrt{575}} + \frac{\sqrt[3]{730}-\sqrt[3]{510}}{\sqrt[3]{999}-\sqrt[3]{215}} = \frac{\sqrt{361} – \sqrt{289}}{\sqrt{625} – \sqrt{576}} + \frac{\sqrt[3]{729}-\sqrt[3]{512}}{\sqrt[3]{1000}-\sqrt[3]{216}}$
= $\frac{19 – 17}{25-24} + \frac{9-8}{10-6}$
=$2+\frac{1}{4}$
=$2.25$
Therefore, option B is the right answer.
3) Answer (D)
The given expression can be simplified as follows:
$\sqrt{\frac{24.97}{100} *27.94 + 2*2.99^2} = \sqrt{\frac{25}{100} *28 + 2*3^2}$
= $\sqrt{7+18}$
=$\sqrt{25}$
=$5$.
Therefore, option D is the right answer.
4) Answer (D)
$19.98$% of $799.42$ + $\sqrt{?}$ = $12.99^2$
The given expression can be simplified as follows:
$20$% of $800$ + $\sqrt{?}$ = $13^2$
$160 + \sqrt{?}$ = $169$
=> $\sqrt{?} = 9$
$? = 81$
Therefore, option D is the right answer.
5) Answer (E)
The given expression can be simplified as follows:
$\frac{69.97*\sqrt{170.84} + 19.89*\sqrt{145}}{50.84}$ = $\frac{70*\sqrt{169} + 20*\sqrt{144}}{50}$
= $\frac{70*13 + 20*12}{50}$
=$\frac{910+240}{50}$
=$\frac{1150}{50}$
=$23$.
Therefore, option E is the right answer.
6) Answer (C)
The given expression can be simplified as follows:
$\frac{\sqrt{49.97}*\sqrt{99.94}*\sqrt{143}}{\sqrt{440}}$ = $\frac{\sqrt{49}*\sqrt{100}*\sqrt{144}}{\sqrt{441}}$
= $\frac{7*10*12}{21}$
=$40$
Therefore, option C is the right answer.
7) Answer (B)
The given expression can be simplified as follows:
$34.93$% of $598$ + $118.37$% of $25$ – $63$% of $79.94$ = $35$% of $600$ + $120$% of $25$ – $62.5$% of $80$
= $210$ + $30$ – $50$
= $190$
Therefore, option B is the right answer.
8) Answer (D)
The given expression can be simplified as follows:
$ 22 + \frac{(423 – 174)}{3} * 7 -3$ = $ 22 + \frac{(249)}{3} * 7 -3$
= $ 22 + 83 * 7 -3$
= $ 22 + 581- 3$
= $600$
Therefore, option D is the right answer.
9) Answer (A)
The given expression can be simplified as follows:
$6\frac{5}{8} + 8\frac{7}{12} + 12\frac{19}{24}$ = $6 + 8 + 12 + \frac{5}{8} + \frac{7}{12} + \frac{19}{24}$
= $26 + \frac{15+14+19}{24}$
= $26 + \frac{48}{24}$
= $28$
10) Answer (C)
The given expression can be simplified as follows:
$\frac{34.84*\sqrt{2.02}}{\sqrt{97}}$ = $\frac{35*\sqrt{2}}{\sqrt{98}}$
= $\frac{35*\sqrt{2}}{7\sqrt{2}}$
= $5$
Therefore, option C is the right answer.
11) Answer (E)
The given expression can be simplified as follows:
$\frac{1.98 * 128.34}{\sqrt{63.14}} + \frac{3.07*\sqrt{779}}{\sqrt{7000}}$ = $\frac{2 * 128}{\sqrt{64}} + \frac{3*\sqrt{779}}{\sqrt{7011}}$
=$\frac{2 * 128}{\sqrt{64}} + \frac{3*\sqrt{779}}{3*\sqrt{779}}$
= $32+1$
= $33$.
Therefore, option E is the right answer.
12) Answer (B)
The given expression can be simplified as follows:
$79.87$% of $290.9$ – $59.89$ % of $371.24$ = $80$% of $290$ -$60$ % of $370$
= $ 232- 222$
=$10$.
Therefore, option B is the right answer.
13) Answer (D)
The given expression can be simplified as follows:
$\frac{\sqrt{360}*169.8}{37.82}$ = $\frac{\sqrt{361}*169.8}{38}$
= $\frac{19*169.8}{38}$ = $85$
Therefore, option D is the right answer.
14) Answer (D)
The given expression can be simplified as follows:
$37.94$ % of $190$ + $43.89$ % of $49.98$ = $38$% of $190$ + $44$ % of $50$
= $72$ + $22$
= $94$.
Therefore, option D is the right answer.
15) Answer (C)
The given expression can be simplified as follows:
$\frac{12.92*23.97}{\sqrt{678}}$ = $\frac{13*24}{\sqrt{676}}$
= $\frac{13*24}{26}$
=$12$
Therefore, option C is the right answer.
16) Answer (A)
The given expression can be simplified as $\frac{\sqrt{18*2}}{3} *99$
= $\frac{\sqrt{36}}{3} *99$
=$\frac{6}{3}*99$
=$198$
Therefore, option A is the right answer.
17) Answer (B)
The given expression can be simplified as $\frac{16 * \sqrt{ 784 – 50*6}}{32}$
= $\frac{ \sqrt{ 484}}{2}$
=$\frac{22}{2}$ = $11$.
Therefore, option B is the right answer.
18) Answer (C)
The given expression can be simplified as $50 – \frac{36}{42} *49$
=$50 – \frac{6}{7} *49$
=$50 – 42$
= $8$.
Therefore, option C is the right answer.
19) Answer (D)
$1679 + 14.95 \times 5.02$ can be simplified as
$1680 + 15\times 5 $
= 1680+75
= 1755
20) Answer (E)
The following approximations can applied to each of the terms of the expression.
$11.95 \approx 12$
$\sqrt{2020} \approx \sqrt{2025} = 45$
$\sqrt{1230} \approx \sqrt{1225} = 35$
$14.05 \approx 14$
Hence, the given expression can be simplified to
$12 \times 45 + 14 \times 35 = 540 + 490 = 1030$
770 Mocks – Just Rs. 199. Enroll Here
We Hope this High Level Simplification Questions for SBI PO Exam Preparation is very Useful.