Arithmetic Questions For IBPS RRB PO
Download Top-20 IBPS RRB PO Arithmetic Questions PDF. Arithmetic questions based on asked questions in previous year exam papers very important for the IBPS RRB PO (Officer Scale-I, II & III) exam
Download Arithmetic Questions For IBPS RRB PO
35 IBPS RRB PO Mocks @ Rs. 149. Enroll Now
70 IBPS RRB (PO + Clerk) Mocks @ Rs. 199
Take a free mock test for IBPS RRB PO
Download IBPS RRB PO Previous Papers PDF
Question 1:Â Find the approximate value of $\Large\frac{169.87^{2}-13.94^{2}}{183.87}$ $\large+$ $\Large\frac{3211.96}{44.002}$
a)Â 224
b)Â 236
c)Â 239
d)Â 229
e)Â None of these
Question 2:Â Find the approximate value of $17.33+142.895-76.795+235.008-4.779+38.102$
a)Â 321
b)Â 351
c)Â 281
d)Â 371
e)Â None of these
Question 3:Â Find the approximate value of ‘x’ in $\Large\frac{383.96}{x} = \frac{x}{24.01}$
a)Â 84
b)Â 96
c)Â 92
d)Â 88
e)Â None of these
Question 4:Â Find the approximate value of $\sqrt{6560}\div2.98^{2}+\sqrt[3]{2189}\div\sqrt{2700}\times\sqrt{5180}\div\sqrt[3]{25}$
a)Â 11
b)Â 15
c)Â 20
d)Â 5
e)Â None of these
Question 5:Â Find the approximate value of $153.001\times146.95-66.009\times73.952+25.001\times23.856$
a)Â 17952
b)Â 18207
c)Â 18456
d)Â 17605
e)Â None of these
Question 6:Â Â Find the approximate value of $\small1798.98\div8.01\times51.965\div779.97-390.001\div25.87$
a)Â 5
b)Â 12
c)Â 0
d)Â 20
e)Â None of these
Free Mock Test for IBPS RRB PO
IBPS RRB Clerk Previous Papers
Question 7:Â Find the approximate value of $\small12.001+156.998-26.879+83.02-124.985$
a)Â 95
b)Â 110
c)Â 105
d)Â 84
e)Â None of these
Question 8: Find the approximate value of ‘x’ in $\Large\frac{107.89}{x} = \frac{x}{11.96}$
a)Â 30
b)Â 24
c)Â 36
d)Â 42
e)Â None of these
Question 9: Find the approximate value of $\sqrt[3]{10645}\div\sqrt{249}\times\sqrt{4084}\div\sqrt[3]{1328}\div\sqrt[6]{26}$
a)Â 6
b)Â 2
c)Â 12
d)Â 4
e)Â None of these
Question 10: Find the approximate value of $69.93$% $of$ $2098.98-149.89$% $of$ $537.789+19.97$% $of$ $1604.87$
a)Â $968$
b)Â $984$
c)Â $992$
d)Â $976$
e)Â None of these
Quantitative Aptitude formulas PDF
35 IBPS RRB PO Mocks @ Rs. 149. Enroll Now
Question 11:Â $292\div16\times1472\div6716+24\div9\div408\times306 =$ ?
a)Â 4
b)Â 6
c)Â 2
d)Â 8
e)Â None of these
Question 12:Â $5\large\frac{3}{4}$ – $2\large\frac{1}{2}$ + $11\large\frac{5}{7}$ + $3\large\frac{9}{14}$ – $4\large\frac{2}{3}$ $=$ ?
a)Â $12\large\frac{59}{84}$
b)Â $13\large\frac{79}{84}$
c)Â $13\large\frac{59}{84}$
d)Â $13\large\frac{61}{84}$
e)Â None of these
Question 13:Â 62.5% of 448 + 133.33% of 723 – 61% of 400 = ?
a)Â 1000
b)Â 1150
c)Â 1025
d)Â 950
e)Â None of these
Question 14:Â 3.7+5.98+2.653-4.213-6.12+5.742+2.258=?
a)Â 12
b)Â 14
c)Â 10
d)Â 18
e)Â 16
Question 15:Â $81\large\frac{9}{11}$% of $5225\div20$% of $125\times77\large\frac{7}{9}$% of $2106\div14.28$% of $5733$ $=$ ?
a)Â 284
b)Â 368
c)Â 342
d)Â 460
e)Â None of these
Question 16:Â $\large1276\div87\div121\times2178\div4$ $=$ $\large444\div74\times$?
a)Â 17
b)Â 12
c)Â 21
d)Â 11
e)Â None of these
Question 17:Â 169.3425+24.9348-47.8658+13.259+5.579 = 37.2495+?
a)Â 146
b)Â 128
c)Â 134
d)Â 136
e)Â None of these
Question 18:Â $3\Large\frac{1}{3}$ $+$ $11\Large\frac{2}{5}$ $-$ $10\Large\frac{4}{7}$ $+$ $4\Large\frac{7}{15}$ $=$ $2\Large\frac{3}{10}$ $+$ ?
a)Â $5\Large\frac{21}{70}$
b)Â $4\Large\frac{23}{70}$
c)Â $6\Large\frac{23}{72}$
d)Â $6\Large\frac{23}{70}$
e)Â None of these
Question 19:Â $27.27$% of $2112$ $+$ $55.55$% of $3276$ $-$ $23.33$% of $1950$ $=$ ?
a)Â 1857
b)Â 1946
c)Â 1971
d)Â 1941
e)Â None of these
Question 20:Â $\large\sqrt{6084}\div\sqrt[3]{2197}$ $+$ $\large\sqrt[3]{54872}\times\sqrt{225}\div\sqrt[3]{6859}$ $=$?
a)Â 34
b)Â 36
c)Â 28
d)Â 42
e)Â None of these
18000 Free Solved Questions – Banking Study Material
35 IBPS RRB PO Mocks @ Rs. 149. Enroll Now
Answers & Solutions:
1) Answer (D)
$\Large\frac{169.87^{2}-13.94^{2}}{183.87}$ $\large+$ $\Large\frac{3211.96}{44.002}\simeq \frac{170^{2}-14^{2}}{184}$ $\large+$ $\Large\frac{3212}{44}$
$= \Large\frac{(170+14)(170-14)}{184}$ $+$ $73$
$= \Large\frac{184\times156}{184}$ $+$ $73$
$= 156+73 = 229$
2) Answer (B)
$17.33+142.895-76.795+235.008-4.779+38.102 \simeq 17+143-77+235-5+38$
Adding all positive terms:
$17+143+235+38 = 433$
Adding all negative terms:
$77+5 = 82$
$\therefore$ $17+143-77+235-5+38 = 433-82 = 351$
3) Answer (B)
$\Large\frac{383.96}{x} = \frac{x}{24.01}$
$\Rightarrow x^{2} \simeq 384\times24 = 9216$
$\therefore$ x $= \sqrt{9216} = 96$
4) Answer (B)
$\sqrt{6560}\div2.98^{2}+\sqrt[3]{2189}\div\sqrt{2700}\times\sqrt{5180}\div\sqrt[3]{25} \simeq \sqrt{6561}\div3^{2}+\sqrt[3]{2197}\div\sqrt{2704}\times\sqrt{5184}\div\sqrt[3]{27}$
$= \Large\frac{\sqrt{6561}}{3^{2}}+\frac{\sqrt[3]{2197}\times\sqrt{5184}}{\sqrt{2704}\times\sqrt[3]{27}}$
$= \Large\frac{81}{9}+\frac{13\times72}{52\times3}$ $= 9+6 = 15$
5) Answer (B)
$153.001\times146.95-66.009\times73.952+25.001\times23.856 \simeq 153\times147-66\times74+25\times24$
$153\times147$ can be written as $(150+3)(150-3)$
$=$ $150^{2}-3^{2}$ $(\because (a+b)(a-b) = a^{2}-b^{2})$
$=$ $22500-9$ $=$ $22491$
$66\times74$ can be written as $(70-4)(70+4)$ $=$ $70^{2}-4^{2}$ $=$ $4900-16 = 4884$
$25\times24$ can be written as $24\times\Large\frac{100}{4} =$ $600$
$\therefore$ $153\times147-66\times74+25\times24 = 22491-4884+600 = 18207$
6) Answer (C)
$1798.98\div8.01\times51.965\div779.97-390.001\div25.87 \simeq 1800\div8\times52\div780-390\div26$
$= \Large\frac{1800\times52}{8\times780}-\frac{390}{26}$
$= 15-15 = 0$
7) Answer (E)
$12.001+156.998-26.879+83.02-124.985 \simeq 12+157-27+83-125$
Adding all positive terms
$12+157+83 = 252$
Adding all negative terms
$27+125 = 152$
$\therefore 12+157-27+83-125 = 252-152 = 100$
8) Answer (C)
$\Large\frac{107.89}{x} = \frac{x}{11.96}$
$\approx$ $\Large\frac{108}{x} = \frac{x}{12}$
$\Rightarrow$ x$^{2} = 108\times12 = 1296$
$\therefore x = 36$
9) Answer (D)
$\large\sqrt[3]{10645}\div\sqrt{249}\times\sqrt{4084}\div\sqrt[3]{1328}\div\sqrt[6]{26} \simeq \sqrt[3]{10648}\div\sqrt{256}\times\sqrt{4096}\div\sqrt[3]{1331}\div\large\sqrt[6]{27}$
$\large\sqrt[6]{27}$ $=$ $(27)^{\large\frac{1}{6}}$ $=$ $(27^{\large\frac{1}{3}})^{\large\frac{1}{2}}$ $=$ $(3)^{\large\frac{1}{2}}$ $\simeq$ $(4)^{\large\frac{1}{2}}$ $= 2$
$\Large\frac{22\times64}{16\times11\times2} =$ $4$
10) Answer (B)
$69.93$% of $2098.98$ $\simeq$ $70$% of $2100$ $=$ $\Large\frac{70}{100}$ $\times$ $2100 = 1470$
$149.89$% of $537.789$ $\simeq$ $150$% of $538$ $=$ $\Large\frac{150}{100}$ $\times$ $538 = 807$
$19.97$% of $1604.87$ $\simeq$ $20$% of $1605$ $=$ $\Large\frac{20}{100}$ $\times$ $1605 = 321$
$\therefore$ $69.93$% of $2098.98-149.89$% of $537.789+24.97$% of $1604.87 = 1470-807+321 = 984$
11) Answer (B)
$\Large\frac{292}{16}$ $\times$ $\Large\frac{1472}{6716}$ $=$ $4$
$\Large\frac{24\times306}{9\times408}$ $=$ $2$
$\therefore 292\div16\times1472\div6716+24\div9\div408\times306 = 4+2 = 6$
12) Answer (B)
$5\Large\frac{3}{4}$ – $2\Large\frac{1}{2}$ + $11\Large\frac{5}{7}$ + $3\Large\frac{9}{14}$ – $4\Large\frac{2}{3}$ $=$
$5$ – $2$ + $11$ + $3$ – $4$ + $\Large\frac{3}{4}$ – $\Large\frac{1}{2}$ + $\Large\frac{5}{7}$ + $\Large\frac{9}{14}$ – $\Large\frac{2}{3}$
$=$ $13$ + $\Large\frac{63 – 42 + 60 + 54 – 56}{84}$
$=$ $13\Large\frac{79}{84}$
13) Answer (A)
$12.5$% $\rightarrow$ $\Large\frac{1}{8}$
$62.5$% $\rightarrow$ $\Large\frac{5}{8}$
$62.5$% of $448$ $=$ $\Large\frac{5}{8}$ $\times$ $448 = 280$
$133.33$% $=$ $100$% $+$ $33.33$%
$100$% $\rightarrow$ $1$
$33.33$% $\rightarrow$ $\Large\frac{1}{3}$
$133.33$% $=$ ($1$+$\Large\frac{1}{3}$) $=$ $\Large\frac{4}{3}$
$133.33$% of $723$ $=$ $\Large\frac{4}{3}$ $\times$ $723$ $=$ $964$
$61$% of $400$ $=$ $\Large\frac{61}{100}$ $\times$ $400$ $=$ $244$
$62.5$% of $448$ + $133.33$% of $723$ – $61$% of $400$ $=$ $280$ + $964$ – $244$ $=$ $1000$
14) Answer (C)
Adding all positive terms$
3.7+5.98+2.653+5.742+2.258 = 20.333
Adding all negative terms
4.213+6.12 = 10.333
$\therefore$ (3.7+5.98+2.653+5.742+2.258)-(4.213+6.12) = 20.333-10.333 = 10
15) Answer (C)
$9\large\frac{1}{11}$% $=$ $\large\frac{1}{11}$
$81\large\frac{9}{11}$% $=$ $\large\frac{9}{11}$
$81\large\frac{9}{11}$% of $5225$ $=$ $\large\frac{9}{11}$ $\times$ $5225 = 4275$
$20$% $=$ $\Large\frac{1}{5}$
$20$% of $125$ $=$ $\Large\frac{1}{5}$ $\times$125 $=$ $25$
$11\large\frac{1}{9}$% $=$ $\large\frac{1}{9}$
$77\large\frac{7}{9}$% $=$ $\large\frac{7}{9}$
$77\large\frac{7}{9}$% of $2106$ $=$ $\large\frac{7}{9}$ $\times$ $2106 = 1638$
$14.28$% $=$ $\large\frac{1}{7}$
$14.28$% of $5733$ $=$ $\large\frac{1}{7}$ $\times5733 = 819$
$\therefore$ $81\large\frac{9}{11}$% of $5225\div20$% of $125\times77\large\frac{7}{9}$% of $2106\div14.28$% of $5733 =$Â $\Large\frac{4275}{25}$ $\times$ $\Large\frac{1638}{819}$ $=$ $342$
16) Answer (D)
$\Large\frac{1276\times2178}{87\times121\times4}$ $=$ $\Large\frac{444}{74}\times$?
$=$ $\Large\frac{1276\times2178}{87\times121\times4}\times\frac{74}{444}$
= 11
17) Answer (B)
Adding all Positive terms:
169.3425+24.9348+13.259+5.579 $=$ 213.1153
Adding all Negative terms:
47.8658++37.2495 $=$ 85.1153
$\therefore$ 169.3425+24.9348-47.8658+13.259+5.579 – 37.2495 $=$ 128
18) Answer (D)
$3\Large\frac{1}{3}$ $+$ $11\Large\frac{2}{5}$ $-$ $10\Large\frac{4}{7}$ $+$ $4\Large\frac{7}{15}$ $-$ $2\Large\frac{3}{10}$ $=$ $3+11-10+4-2+$ $\Large\frac{1}{3}$ $+$ $\Large\frac{2}{5}$ $-$ $\Large\frac{4}{7}$ $+$ $\Large\frac{7}{15}$ $-$ $\Large\frac{3}{10}$
$=$ $6+\Large\frac{70+84-120+98-63}{210}$
$=$ $6+\Large\frac{69}{210}$ $=$ 6$\Large\frac{23}{70}$
19) Answer (D)
$\large\frac{1}{11}$ $=$ $9.09$%
$\Rightarrow$ $\large\frac{3}{11}$ $=$ $27.27$%
$27.27$% of $2112$ $=$ $\large\frac{3}{11}$ $\times2112$ $=$ $576$
$\large\frac{1}{9}$ $=$ $11.11$%
$\large\frac{5}{9}$ $=$ $55.55$%
$55.55$% of $3276$ $=$ $\large\frac{5}{9}$ $\times3276$ $=$ $1820$
$\large\frac{1}{30}$ $=$ $3.33$%
$\large\frac{7}{30}$ $=$ $23.33$%
$23.33$% of $1950$ = $\large\frac{7}{30}$ $\times1950$ $=$ $455$
$27.27$% of $2112$ $+$ $55.55$% of $3276$ $-$ $23.33$% of $1950$ $=$ $576$ $+$ $1820$ $-$ $455$ $=$ $1941$
20) Answer (B)
$\large\sqrt{6084}\div\sqrt[3]{2197}$ $+$ $\large\sqrt[3]{54872}\times\sqrt{225}\div\sqrt[3]{6859} =$ $\Large\frac{78}{13}$ $+$ $\Large\frac{38\times15}{19}$
$=$ $\large6$ $+$ $\large30$ $=$ $\large36$