0
1541

# Arithmetic Questions For IBPS RRB PO

Download Top-20 IBPS RRB PO Arithmetic Questions PDF. Arithmetic questions based on asked questions in previous year exam papers very important for the IBPS RRB PO (Officer Scale-I, II & III) exam

Question 1:Â Find the approximate value of $\Large\frac{169.87^{2}-13.94^{2}}{183.87}$ $\large+$ $\Large\frac{3211.96}{44.002}$

a)Â 224

b)Â 236

c)Â 239

d)Â 229

e)Â None of these

Question 2:Â Find the approximate value of $17.33+142.895-76.795+235.008-4.779+38.102$

a)Â 321

b)Â 351

c)Â 281

d)Â 371

e)Â None of these

Question 3:Â Find the approximate value of ‘x’ in $\Large\frac{383.96}{x} = \frac{x}{24.01}$

a)Â 84

b)Â 96

c)Â 92

d)Â 88

e)Â None of these

Question 4:Â Find the approximate value of $\sqrt{6560}\div2.98^{2}+\sqrt[3]{2189}\div\sqrt{2700}\times\sqrt{5180}\div\sqrt[3]{25}$

a)Â 11

b)Â 15

c)Â 20

d)Â 5

e)Â None of these

Question 5:Â Find the approximate value of $153.001\times146.95-66.009\times73.952+25.001\times23.856$

a)Â 17952

b)Â 18207

c)Â 18456

d)Â 17605

e)Â None of these

Question 6:Â Â Find the approximate value of $\small1798.98\div8.01\times51.965\div779.97-390.001\div25.87$

a)Â 5

b)Â 12

c)Â 0

d)Â 20

e)Â None of these

Question 7:Â Find the approximate value of $\small12.001+156.998-26.879+83.02-124.985$

a)Â 95

b)Â 110

c)Â 105

d)Â 84

e)Â None of these

Question 8:Â Find the approximate value of ‘x’ inÂ  $\Large\frac{107.89}{x} = \frac{x}{11.96}$

a)Â 30

b)Â 24

c)Â 36

d)Â 42

e)Â None of these

Question 9:Â Find the approximate value ofÂ  $\sqrt[3]{10645}\div\sqrt{249}\times\sqrt{4084}\div\sqrt[3]{1328}\div\sqrt[6]{26}$

a)Â 6

b)Â 2

c)Â 12

d)Â 4

e)Â None of these

Question 10:Â Find the approximate value ofÂ  $69.93$% $of$ $2098.98-149.89$% $of$ $537.789+19.97$% $of$ $1604.87$

a)Â $968$

b)Â $984$

c)Â $992$

d)Â $976$

e)Â None of these

Question 11:Â $292\div16\times1472\div6716+24\div9\div408\times306 =$ ?

a)Â 4

b)Â 6

c)Â 2

d)Â 8

e)Â None of these

Question 12:Â $5\large\frac{3}{4}$ – $2\large\frac{1}{2}$ + $11\large\frac{5}{7}$ + $3\large\frac{9}{14}$ – $4\large\frac{2}{3}$ $=$ ?

a)Â $12\large\frac{59}{84}$

b)Â $13\large\frac{79}{84}$

c)Â $13\large\frac{59}{84}$

d)Â $13\large\frac{61}{84}$

e)Â None of these

Question 13:Â 62.5% of 448 + 133.33% of 723 – 61% of 400 = ?

a)Â 1000

b)Â 1150

c)Â 1025

d)Â 950

e)Â None of these

Question 14:Â 3.7+5.98+2.653-4.213-6.12+5.742+2.258=?

a)Â 12

b)Â 14

c)Â 10

d)Â 18

e)Â 16

Question 15:Â $81\large\frac{9}{11}$% of $5225\div20$% of $125\times77\large\frac{7}{9}$% of $2106\div14.28$% of $5733$ $=$ ?

a)Â 284

b)Â 368

c)Â 342

d)Â 460

e)Â None of these

Question 16:Â $\large1276\div87\div121\times2178\div4$ $=$ $\large444\div74\times$?

a)Â 17

b)Â 12

c)Â 21

d)Â 11

e)Â None of these

Question 17:Â 169.3425+24.9348-47.8658+13.259+5.579 = 37.2495+?

a)Â 146

b)Â 128

c)Â 134

d)Â 136

e)Â None of these

Question 18:Â $3\Large\frac{1}{3}$ $+$ $11\Large\frac{2}{5}$ $-$ $10\Large\frac{4}{7}$ $+$ $4\Large\frac{7}{15}$ $=$ $2\Large\frac{3}{10}$ $+$ ?

a)Â $5\Large\frac{21}{70}$

b)Â $4\Large\frac{23}{70}$

c)Â $6\Large\frac{23}{72}$

d)Â $6\Large\frac{23}{70}$

e)Â None of these

Question 19:Â $27.27$% of $2112$ $+$ $55.55$% of $3276$ $-$ $23.33$% of $1950$ $=$ ?

a)Â 1857

b)Â 1946

c)Â 1971

d)Â 1941

e)Â None of these

Question 20:Â $\large\sqrt{6084}\div\sqrt[3]{2197}$ $+$ $\large\sqrt[3]{54872}\times\sqrt{225}\div\sqrt[3]{6859}$ $=$?

a)Â 34

b)Â 36

c)Â 28

d)Â 42

e)Â None of these

$\Large\frac{169.87^{2}-13.94^{2}}{183.87}$ $\large+$ $\Large\frac{3211.96}{44.002}\simeq \frac{170^{2}-14^{2}}{184}$ $\large+$ $\Large\frac{3212}{44}$

$= \Large\frac{(170+14)(170-14)}{184}$ $+$ $73$

$= \Large\frac{184\times156}{184}$ $+$ $73$

$= 156+73 = 229$

$17.33+142.895-76.795+235.008-4.779+38.102 \simeq 17+143-77+235-5+38$

$17+143+235+38 = 433$

$77+5 = 82$

$\therefore$ $17+143-77+235-5+38 = 433-82 = 351$

$\Large\frac{383.96}{x} = \frac{x}{24.01}$

$\Rightarrow x^{2} \simeq 384\times24 = 9216$

$\therefore$ x $= \sqrt{9216} = 96$

$\sqrt{6560}\div2.98^{2}+\sqrt[3]{2189}\div\sqrt{2700}\times\sqrt{5180}\div\sqrt[3]{25} \simeq \sqrt{6561}\div3^{2}+\sqrt[3]{2197}\div\sqrt{2704}\times\sqrt{5184}\div\sqrt[3]{27}$

$= \Large\frac{\sqrt{6561}}{3^{2}}+\frac{\sqrt[3]{2197}\times\sqrt{5184}}{\sqrt{2704}\times\sqrt[3]{27}}$

$= \Large\frac{81}{9}+\frac{13\times72}{52\times3}$ $= 9+6 = 15$

$153.001\times146.95-66.009\times73.952+25.001\times23.856 \simeq 153\times147-66\times74+25\times24$

$153\times147$ can be written as $(150+3)(150-3)$

$=$ $150^{2}-3^{2}$ $(\because (a+b)(a-b) = a^{2}-b^{2})$
$=$ $22500-9$ $=$ $22491$

$66\times74$ can be written as $(70-4)(70+4)$ $=$ $70^{2}-4^{2}$ $=$ $4900-16 = 4884$

$25\times24$ can be written as $24\times\Large\frac{100}{4} =$ $600$

$\therefore$ $153\times147-66\times74+25\times24 = 22491-4884+600 = 18207$

$1798.98\div8.01\times51.965\div779.97-390.001\div25.87 \simeq 1800\div8\times52\div780-390\div26$

$= \Large\frac{1800\times52}{8\times780}-\frac{390}{26}$

$= 15-15 = 0$

$12.001+156.998-26.879+83.02-124.985 \simeq 12+157-27+83-125$

$12+157+83 = 252$

$27+125 = 152$

$\therefore 12+157-27+83-125 = 252-152 = 100$

$\Large\frac{107.89}{x} = \frac{x}{11.96}$

$\approx$ $\Large\frac{108}{x} = \frac{x}{12}$

$\Rightarrow$ x$^{2} = 108\times12 = 1296$

$\therefore x = 36$

$\large\sqrt[3]{10645}\div\sqrt{249}\times\sqrt{4084}\div\sqrt[3]{1328}\div\sqrt[6]{26} \simeq \sqrt[3]{10648}\div\sqrt{256}\times\sqrt{4096}\div\sqrt[3]{1331}\div\large\sqrt[6]{27}$

$\large\sqrt[6]{27}$ $=$ $(27)^{\large\frac{1}{6}}$ $=$ $(27^{\large\frac{1}{3}})^{\large\frac{1}{2}}$ $=$ $(3)^{\large\frac{1}{2}}$ $\simeq$ $(4)^{\large\frac{1}{2}}$ $= 2$

$\Large\frac{22\times64}{16\times11\times2} =$ $4$

$69.93$% of $2098.98$ $\simeq$ $70$% of $2100$ $=$ $\Large\frac{70}{100}$ $\times$ $2100 = 1470$

$149.89$% of $537.789$ $\simeq$ $150$% of $538$ $=$ $\Large\frac{150}{100}$ $\times$ $538 = 807$

$19.97$% of $1604.87$ $\simeq$ $20$% of $1605$ $=$ $\Large\frac{20}{100}$ $\times$ $1605 = 321$

$\therefore$ $69.93$% of $2098.98-149.89$% of $537.789+24.97$% of $1604.87 = 1470-807+321 = 984$

$\Large\frac{292}{16}$ $\times$ $\Large\frac{1472}{6716}$ $=$ $4$

$\Large\frac{24\times306}{9\times408}$ $=$ $2$

$\therefore 292\div16\times1472\div6716+24\div9\div408\times306 = 4+2 = 6$

$5\Large\frac{3}{4}$ – $2\Large\frac{1}{2}$ + $11\Large\frac{5}{7}$ + $3\Large\frac{9}{14}$ – $4\Large\frac{2}{3}$ $=$

$5$ – $2$ + $11$ + $3$ – $4$ + $\Large\frac{3}{4}$ – $\Large\frac{1}{2}$ + $\Large\frac{5}{7}$ + $\Large\frac{9}{14}$ – $\Large\frac{2}{3}$

$=$ $13$ + $\Large\frac{63 – 42 + 60 + 54 – 56}{84}$

$=$ $13\Large\frac{79}{84}$

$12.5$% $\rightarrow$ $\Large\frac{1}{8}$

$62.5$% $\rightarrow$ $\Large\frac{5}{8}$

$62.5$% of $448$ $=$ $\Large\frac{5}{8}$ $\times$ $448 = 280$

$133.33$% $=$ $100$% $+$ $33.33$%

$100$% $\rightarrow$ $1$

$33.33$% $\rightarrow$ $\Large\frac{1}{3}$

$133.33$% $=$ ($1$+$\Large\frac{1}{3}$) $=$ $\Large\frac{4}{3}$

$133.33$% of $723$ $=$ $\Large\frac{4}{3}$ $\times$ $723$ $=$ $964$

$61$% of $400$ $=$ $\Large\frac{61}{100}$ $\times$ $400$ $=$ $244$

$62.5$% of $448$ + $133.33$% of $723$ – $61$% of $400$ $=$ $280$ + $964$ – $244$ $=$ $1000$

Adding all positive terms$3.7+5.98+2.653+5.742+2.258 = 20.333 Adding all negative terms 4.213+6.12 = 10.333$\therefore$(3.7+5.98+2.653+5.742+2.258)-(4.213+6.12) = 20.333-10.333 = 10 15)Â AnswerÂ (C)$9\large\frac{1}{11}$%$=\large\frac{1}{11}81\large\frac{9}{11}$%$=\large\frac{9}{11}81\large\frac{9}{11}$% of$5225=\large\frac{9}{11}\times5225 = 427520$%$=\Large\frac{1}{5}20$% of$125=\Large\frac{1}{5}\times$125$=2511\large\frac{1}{9}$%$=\large\frac{1}{9}77\large\frac{7}{9}$%$=\large\frac{7}{9}77\large\frac{7}{9}$% of$2106=\large\frac{7}{9}\times2106 = 163814.28$%$=\large\frac{1}{7}14.28$% of$5733=\large\frac{1}{7}\times5733 = 819\therefore81\large\frac{9}{11}$% of$5225\div20$% of$125\times77\large\frac{7}{9}$% of$2106\div14.28$% of$5733 =$Â$\Large\frac{4275}{25}\times\Large\frac{1638}{819}=342$16)Â AnswerÂ (D)$\Large\frac{1276\times2178}{87\times121\times4}=\Large\frac{444}{74}\times$?$=\Large\frac{1276\times2178}{87\times121\times4}\times\frac{74}{444}$= 11 17)Â AnswerÂ (B) Adding all Positive terms: 169.3425+24.9348+13.259+5.579$=$213.1153 Adding all Negative terms: 47.8658++37.2495$=$85.1153$\therefore$169.3425+24.9348-47.8658+13.259+5.579 – 37.2495$=$128 18)Â AnswerÂ (D)$3\Large\frac{1}{3}+11\Large\frac{2}{5}-10\Large\frac{4}{7}+4\Large\frac{7}{15}-2\Large\frac{3}{10}=3+11-10+4-2+\Large\frac{1}{3}+\Large\frac{2}{5}-\Large\frac{4}{7}+\Large\frac{7}{15}-\Large\frac{3}{10}=6+\Large\frac{70+84-120+98-63}{210}=6+\Large\frac{69}{210}=$6$\Large\frac{23}{70}$19)Â AnswerÂ (D)$\large\frac{1}{11}=9.09$%$\Rightarrow\large\frac{3}{11}=27.27$%$27.27$% of$2112=\large\frac{3}{11}\times2112=576\large\frac{1}{9}=11.11$%$\large\frac{5}{9}=55.55$%$55.55$% of$3276=\large\frac{5}{9}\times3276=1820\large\frac{1}{30}=3.33$%$\large\frac{7}{30}=23.33$%$23.33$% of$1950$=$\large\frac{7}{30}\times1950=45527.27$% of$2112+55.55$% of$3276-23.33$% of$1950=576+1820-455=1941$20)Â AnswerÂ (B)$\large\sqrt{6084}\div\sqrt[3]{2197}+\large\sqrt[3]{54872}\times\sqrt{225}\div\sqrt[3]{6859} =\Large\frac{78}{13}+\Large\frac{38\times15}{19}=\large6+\large30=\large36\$