0
1140

# Arithmetic Questions for IBPS PO PDF

Download Arithmetic  Questions For IBPS PO PDF. Practice Arithmetic Questions with Solutions for Banking exams based on asked questions in previous papers.

Instructions

What approximate value will come at the place of question mark ‘?’ in the following question?

Question 1: ?% of $4.97^4 = 8.002*18.75$

a) 17

b) 28

c) 31

d) 19

e) 24

Question 2: 33.333% of (19.99% of (14.48% of 300.97) = ?

a) 4

b) 3

c) 1.9

d) 2.5

e) 4.5

Question 3: 42.98% of 571 – 84.08% of 219.997 = ?

a) 54.5

b) 64.2

c) 60.7

d) 71.1

e) 57.8

Question 4: $\frac{\sqrt{436+292} + ?^2}{18.001}$ = 54.88

a) 27

b) 39

c) 33

d) 31

e) 29

Question 5: $16.042^2 + ? = 27.994 * 15.012 + 324.98/5$

a) 193

b) 229

c) 214

d) 246

e) 198

Question 6: The denominator of a fraction is 2 more than thrice it’s numerator.If the numerator as well as denominator are increased by one,the fraction becomes ⅓ .what was that the original fraction?

a) 2/8

b) 3/11

c) 4/14

d) 5/17

e) Cannot be determined

Question 7: What should come in place of the question marks in the following equations?
$\frac{?}{24}=\frac{72}{\sqrt{?}}$

a) 12

b) 16

c) 114

d) 144

e) None of these

Question 8: A number gets reduced to its one third when 48 is subtracted from it.What is two third of that Number?

a) 24

b) 72

c) 36

d) 48

e) None of these

Instructions

Find the what approximate value which should be come in place of the following questions .(You are not expected to  calculate exact value).

Question 9: $\sqrt{45689}=?$

a) 180

b) 415

c) 150

d) 214

e) 300

Question 10: $(10008.99)^{2}/(10009.001)\times\sqrt{3589}\times0.4987=?$

a) 30,000

b) 3,00,000

c) 5,000

d) 9,000,000

e) None of these

Question 11: 399.9+ 206 x 11.009=?

a) 2800

b) 6666

c) 4666

d) 2400

e) 2688

Question 12: $\frac{2}{5}+\frac{7}{8}\times\frac{17}{19}\div\frac{6}{5}=?$

a) 1

b) $\frac{1}{2}$

c) 2$\frac{1}{2}$

d) $\frac{3}{4}$

e) $\frac{9}{11}$

Question 13: The sum of three consecutive number is given .What is difference between first and third number?

a) 1

b) 3

c) Either 1 or 2

d) 2

e) None of these

Question 14: What will be come in the place of question mark?
$0.001+9.909\times1.01\div0.1$

a) 99.0819

b) 100.0819

c) 100.091

d) 100.0919

e) None of these

Question 15: What value should come in the question mark
$4275\div496\times(21^{2})$=?

a) 3795

b) 3800

c) 3810

d) 3875

e) 3995

?% of $4.97^4 = 8.002*18.75$ can be written as
?% of $5^4 = 8*18.75$
?% of 625 = 150
? = 150*100/625 = 24
Hence, option E is the correct choice.

33.333% of (19.99% of (14.48% of 300.97) can be approximately written as
0.15*301 / 3 / 5 = 45/15 = 3 approx.
Hence, option B is the correct choice.

42.98% of 571 – 84.08% of 219.997 can be approximately written as
0.43*571 – 0.84*220 = 245.5 – 184.8 = 60.7 approx.
Hence, option c is the correct choice.

$\frac{\sqrt{436+292} + ?^2}{18.001}$ = 54.88 can be written as
$\frac{\sqrt{728} + ?^2}{18}$ = 54.88
27 + $?^2$ = 987.84
$?^2$ = 30.99 = 31 approx.
Hence, option D is the correct option.

$16.042^2 + ? = 27.994 * 15.012 + 324.98/5$ can be approximately written as
$16^2 + ? = 28 * 15 + 325/5$
256 + ? = 420 + 65
? = 229
Hence, option B is the correct choice.

Let the numerator = $x$

=> Denominator = $(3x+2)$

Fraction = $\frac{x}{3x+2}$

If the numerator as well as denominator are increased by one

=> $\frac{x+1}{3x+2+1}=\frac{1}{3}$

=> $\frac{x+1}{3x+3}=\frac{1}{3}$

=> $3x+3=3x+3$

It cannot be solved, thus $x$ can take any value and the fraction can be 2/8 , 3/11 , 4/14 ,….

=> Ans – (E)

Expression : $\frac{?}{24}=\frac{72}{\sqrt{?}}$

=> $(?)^{(1+\frac{1}{2})}= 72 \times 24$

=> $(?)^{\frac{3}{2}} = 1728 = 12^3$

Multiplying exponents by $(\frac{2}{3})$ on both sides

=> $(?)^{(\frac{3}{2} \times \frac{2}{3})}= (12)^{(3 \times \frac{2}{3})}$

=> $(?)=12^2=144$

=> Ans – (D)

Let the number be $x$

According to ques, => $x-48=\frac{x}{3}$

=> $3x-144=x$

=> $3x-x=2x=144$

=> $x=\frac{144}{2}=72$

$\therefore$ $(\frac{2}{3})^{rd}$ of number = $\frac{2}{3} \times 72$

= $2 \times 24 = 48$

=> Ans – (D)

Expression : $\sqrt{45689}=?$

= $\sqrt{7 \times 61 \times 107}$

= $213.75 \approx 214$

=> Ans – (D)

Expression : $(10008.99)^{2}/(10009.001)\times\sqrt{3589}\times0.4987=?$

$\approx \frac{(10009)^2}{10009} \times \sqrt{3600} \times 0.5$

= $1009 \times 60 \times 0.5$

= $1009 \times 30 = 30270$

$\approx 30,000$

=> Ans – (A)

Expression : 399.9+ 206 x 11.009=?

$\approx 400 + (206 \times 11)$

= $400+2266 = 2666$

$\approx 2688$

=> Ans – (E)

Expression : $\frac{2}{5}+\frac{7}{8}\times\frac{17}{19}\div\frac{6}{5}=?$

= $\frac{2}{5} + (\frac{7}{8} \times \frac{17}{19} \times \frac{5}{6})$

= $\frac{2}{5} + \frac{595}{912}$

$\approx 0.4+0.6=1$

=> Ans – (A)

Let the 3 consecutive numbers be $(x-1),(x),(x+1)$

Difference between first and third number = $(x+1)-(x-1)$

= $(x-x)+(1+1)=2$

=> Ans – (D)

Expression : $0.001+9.909\times1.01\div0.1$

= $0.001 + \frac{9.909 \times 1.01}{0.1}$

= $0.001 + (10.00809 \times 10)$

= $0.001 + 100.0809 = 100.0819$

Expression = $4275\div496\times(21^{2})$=?
= $\frac{4275}{496} \times 441$
= $8.62 \times 441 = 3801.42$
$\approx 3800$