Logarithms Questions for XAT 2022 – Download PDF
Download Logarithms Questions for XAT PDF – XAT Logarithms questions pdf by Cracku. Top 10 very Important Logarithms Questions for XAT based on asked questions in previous exam papers.
Download Logarithms Questions for XAT
Get 5 XAT mocks at just Rs.299
Question 1:Â For a real number a, if $\frac{\log_{15}{a}+\log_{32}{a}}{(\log_{15}{a})(\log_{32}{a})}=4$ then a must lie in the range
a)Â $2<a<3$
b)Â $3<a<4$
c)Â $4<a<5$
d)Â $a>5$
Question 2:Â If $\log_{2}[3+\log_{3} \left\{4+\log_{4}(x-1) \right\}]-2=0$ then 4x equals
Question 3:Â If $5 – \log_{10}\sqrt{1 + x} + 4 \log_{10} \sqrt{1 – x} = \log_{10} \frac{1}{\sqrt{1 – x^2}}$, then 100x equals
Question 4:Â If $\log_4m + \log_4n = \log_2(m + n)$ where m and n are positive real numbers, then which of the following must be true?
a)Â $\frac{1}{m} + \frac{1}{n} = 1$
b)Â m = n
c)Â $m^2 + n^2 = 1$
d)Â $\frac{1}{m} + \frac{1}{n} = 2$
e)Â No values of m and n can satisfy the given equation
Question 5:Â The value of $\log_{a}({\frac{a}{b}})+\log_{b}({\frac{b}{a}})$, for $1<a\leq b$ cannot be equal to
a)Â 0
b)Â -1
c)Â 1
d)Â -0.5
Question 6:Â If $\log_{a}{30}=A,\log_{a}({\frac{5}{3}})=-B$ and $\log_2{a}=\frac{1}{3}$, then $\log_3{a}$ equals
a)Â $\frac{2}{A+B-3}$
b)Â $\frac{2}{A+B}-3$
c)Â $\frac{A+B}{2}-3$
d)Â $\frac{A+B-3}{2}$
Question 7:Â If $\log_{4}{5}=(\log_{4}{y})(\log_{6}{\sqrt{5}})$, then y equals
Question 8:Â If $\log_{10}{11} = a$ then $\log_{10}{\left(\frac{1}{110}\right)}$ is equal to
a)Â $-a$
b)Â $(1 + a)^{-1}$
c)Â $\frac{1}{10 a}$
d)Â $-(a + 1)$
Question 9:Â Find the value of $\log_{10}{10} + \log_{10}{10^2} + ….. + \log_{10}{10^n}$
a)Â $n^{2} + 1$
b)Â $n^{2} – 1$
c)Â $\frac{(n^{2} + n)}{2}.\frac{n(n + 1)}{3}$
d)Â $\frac{(n^{2} + n)}{2}$
Question 10:Â what is the value of $\frac{\log_{27}{9} \times \log_{16}{64}}{\log_{4}{\sqrt2}}$?
a)Â $\frac{1}{6}$
b)Â $\frac{1}{4}$
c)Â 8
d)Â 4
Answers & Solutions:
1) Answer (C)
We have :$\frac{\log_{15}{a}+\log_{32}{a}}{(\log_{15}{a})(\log_{32}{a})}=4$
We get $\frac{\left(\frac{\log a}{\log\ 15}+\frac{\log a}{\log32}\right)}{\frac{\log a}{\log\ 15}\times\ \frac{\log a}{\log32}\ \ }=4$
we get $\log a\left(\log32\ +\log\ 15\right)=4\left(\log\ a\right)^2$
we get $\left(\log32\ +\log\ 15\right)=4\log a$
=$\log480=\log a^4$
=$a^4\ =480$
so we can say a is between 4 and 5 .
2)Â Answer:Â 5
We have :
$\log_2\left\{3+\log_3\left\{4+\log_4\left(x-1\right)\right\}\right\}=2$
we get $3+\log_3\left\{4+\log_4\left(x-1\right)\right\}=4$
we get $\log_3\left(4+\log_4\left(x-1\right)\ =\ 1\right)$
we get $4+\log_4\left(x-1\right)\ =\ 3$
$\log_4\left(x-1\right)\ =\ -1$
x-1 = 4^-1
x =Â $\frac{1}{4}+1=\frac{5}{4}$
4x = 5
3)Â Answer:Â 99
$5 – \log_{10}\sqrt{1 + x} + 4 \log_{10} \sqrt{1 – x} = \log_{10} \frac{1}{\sqrt{1 – x^2}}$
We can re-write the equation as:Â $5-\log_{10}\sqrt{1+x}+4\log_{10}\sqrt{1-x}=\log_{10}\left(\sqrt{1+x}\times\ \sqrt{1-x}\right)^{-1}$
$5-\log_{10}\sqrt{1+x}+4\log_{10}\sqrt{1-x}=\left(-1\right)\log_{10}\left(\sqrt{1+x}\right)+\left(-1\right)\log_{10}\left(\sqrt{1-x}\right)$
$5=-\log_{10}\sqrt{1+x}+\log_{10}\sqrt{1+x}-\log_{10}\sqrt{1-x}-4\log_{10}\sqrt{1-x}$
$5=-5\log_{10}\sqrt{1-x}$
$\sqrt{1-x}=\frac{1}{10}$
Squaring both sides:Â $\left(\sqrt{1-x}\right)^2=\frac{1}{100}$
$\therefore\ $Â $x=1-\frac{1}{100}=\frac{99}{100}$
Hence, $100\ x\ =100\times\ \frac{99}{100}=99$
4) Answer (E)
$\log_4mn=\log_2(m+n)$
$\sqrt{\ mn}=(m+n)$
Squarring on both sides
$m^2+n^2+mn\ =\ 0$
Since m, n are positive real numbers, no value of m and n satisfy the above equations.
5) Answer (C)
On expanding the expression we get $1-\log_ab+1-\log_ba$
$or\ 2-\left(\log_ab+\frac{1}{\log_ba}\right)$
Now applying the property of AM>=GM, we get that  $\frac{\left(\log_ab+\frac{1}{\log_ba}\right)}{2}\ge1\ or\ \left(\log_ab+\frac{1}{\log_ba}\right)\ge2$ Hence from here we can conclude that the expression will always be equal to 0 or less than 0. Hence any positive value is not possible. So 1 is not possible.
6) Answer (A)
$\log_a30=A\ or\ \log_a5+\log_a2+\log_a3=A$………..(1)
$\log_a\left(\frac{5}{3}\right)=-B\ or\ \log_a3-\log_a5=B$………….(2)
and finally $\log_a2=3$
Substituting this in (1) we get $\log_a5+\log_a3=A-3$
Now we have two equations in two variables (1) and (2) . On solving we get
$\log_a3=\frac{\left(A+B-3\right)}{2\ }or\ \log_3a=\frac{2}{A+B-3}$
7)Â Answer:Â 36
$\frac{\log\ 5}{2\log2}\ =\frac{\log\ y}{2\log2}\cdot\frac{\log\ 5}{2\log6}$
$\log\ 36\ =\ \log\ y;\ \therefore\ y\ =36$
8) Answer (D)
$\log_{10}{\left(\frac{1}{110}\right)}$
$\log_a\left(\ \frac{\ x}{y}\right)\ =\ \log_ax-\log_ay$
$\log_{10}{\left(\frac{1}{110}\right)}$ =Â $=\ \log_{10}1-\log_{10}110$
= 0$-\log_{10}110$
=$-\log_{10}11\times\ 10$
=$-\left(\log_{10}11+\log_{10}10\right)$
= -(a+1)
D is the correct answer.
9) Answer (D)
$\log_{10}{10} + \log_{10}{10^2} + ….. + \log_{10}{10^n}$
Since $\log_aa\ $ = 1
$\log_{10}{10} + \log_{10}{10^2} + ….. + \log_{10}{10^n}$ = 1+2+….n
=$\ \frac{\ n\left(n+1\right)}{2}$
=$\frac{(n^{2} + n)}{2}$
D is the correct answer.
10) Answer (D)
$\frac{\log_{27}{9} \times \log_{16}{64}}{\log_{4}{\sqrt2}}$?
=$\frac{\ \log_{3^3}3^2\times\ \log_{2^4}2^6}{\log_{\left(\sqrt{\ 2}\right)^4}\sqrt{\ 2}}$
=$\frac{\ \ \frac{\ 2}{3}\times\ \frac{\ 6}{4}}{\ \frac{\ 1}{4}}$
=4
D is the correct answer.
Download XAT previous papers [PDF]
We hope these Logarithms questions for XAT pdf for the XAT exam will be highly useful for your preparation.