Trigonometry Questions for SSC CHSL and MTS
Here you can download the Trigonometry Questions for SSC CHSL and MTS PDF with solutions by Cracku. These are the most important Trigonometry questions PDF prepared by various sources also based on previous year’s papers. Utilize this PDF for Trigonometry for SSC CHSL and MTS. You can find a list of Trigonometry in this PDF which help you to test yourself and practice. So you can click on the below link to download the PDF for reference and do more practice.
Download Trigonometry Questions for SSC CHSL and MTS
Enroll to 15 SSC CHSL 2022 Mocks At Just Rs. 149
Question 1:Â If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=5$, then the value of $\frac{4\sin^2\theta+3}{2\cos^2\theta+2}$ is:
a)Â $\frac{75}{17}$
b)Â $\frac{75}{34}$
c)Â $\frac{1}{2}$
d)Â $\frac{3}{2}$
1) Answer (B)
Solution:
$\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=5$
$\sin\theta+\cos\theta=5\sin\theta\ -5\cos\theta\ $
$4\sin\theta=6\cos\theta\ $
$\tan\theta\ =\frac{3}{2}$
$\sec\theta\ =\sqrt{\left(\frac{3}{2}\right)^2+1}=\frac{\sqrt{13}}{2}$
$\cos\theta\ =\frac{2}{\sqrt{13}}$
$\sin\theta\ =\sqrt{1-\left(\frac{2}{\sqrt{13}}\right)^2}=\frac{3}{\sqrt{13}}$
$\frac{4\sin^2\theta+3}{2\cos^2\theta+2}=\frac{4\left(\frac{3}{\sqrt{13}}\right)^2+3}{2\left(\frac{2}{\sqrt{13}}\right)^2+2}$
$=\frac{\frac{36}{13}+3}{\frac{8}{13}+2}$
$=\frac{\frac{36+39}{13}}{\frac{8+26}{13}}$
$=\frac{75}{34}$
Hence, the correct answer is Option B
Question 2:Â Find the value of $\frac{\tan^2 30^\circ}{\sec^2 30^\circ} + \frac{\cosec^2 45^\circ}{\cot^2 45^\circ} – \frac{\sec^2 60^\circ}{\cosec^2 60^\circ}$
a)Â $-\frac{3}{4}$
b)Â $\frac{5}{4}$
c)Â $\frac{13}{4}$
d)Â $\frac{23}{12}$
2) Answer (A)
Solution:
$\frac{\tan^230^{\circ}}{\sec^230^{\circ}}+\frac{\operatorname{cosec}^245^{\circ}}{\cot^245^{\circ}}-\frac{\sec^260^{\circ}}{\operatorname{cosec}^260^{\circ}}=\frac{\left(\frac{1}{\sqrt{3}}\right)^2}{\left(\frac{2}{\sqrt{3}}\right)^2}+\frac{\left(\sqrt{2}\right)^2}{\left(1\right)^2}-\frac{\left(2\right)^2}{\left(\frac{2}{\sqrt{3}}\right)^2}$
$=\frac{\frac{1}{3}}{\frac{4}{3}}+\frac{2}{1}-\frac{4}{\frac{4}{3}}$
$=\frac{1}{4}+2-\frac{4\times3}{4}$
$=\frac{-3}{4}$
Hence, the correct answer is Option A
Question 3:Â If $\sin^2 \theta – \cos^2 \theta – 3 \sin \theta + 2 = 0, 0^\circ < \theta < 90^\circ$, then what is the value of $\frac{1}{\sqrt{\sec \theta – \tan \theta}}$ is:
a)Â $\sqrt[4]{3}$
b)Â $\sqrt[2]{2}$
c)Â $\sqrt[2]{3}$
d)Â $\sqrt[4]{2}$
3) Answer (A)
Solution:
$\sin^2\theta-\cos^2\theta-3\sin\theta+2=0$
$\sin^2\theta-\left(1-\sin^2\theta\ \right)-3\sin\theta+2=0$
$2\sin^2\theta-3\sin\theta+1=0$
$2\sin^2\theta-2\sin\theta-\sin\theta\ +1=0$
$2\sin\theta\ \left(\sin\theta\ -1\right)-1\left(\sin\theta\ -1\right)=0$
$\left(\sin\theta\ -1\right)\left(2\sin\theta\ -1\right)=0$
$\sin\theta\ -1=0$ or  $2\sin\theta\ -1=0$
$\sin\theta\ =1$ or  $\sin\theta\ =\frac{1}{2}$
$\theta\ =90^{\circ\ }$ or  $\theta\ =30^{\circ\ }$
Given, $0^\circ < \theta < 90^\circ$
$\Rightarrow$Â Â $\theta\ =30^{\circ\ }$
$\frac{1}{\sqrt{\sec\theta-\tan\theta}}=\frac{1}{\sqrt{\sec30^{\circ\ }-\tan30^{\circ\ }}}$
$=\frac{1}{\sqrt{\frac{2}{\sqrt{3}}\ -\frac{1}{\sqrt{3}}}}$
$=\frac{1}{\sqrt{\frac{1}{\sqrt{3}}}}$
$=\sqrt[\ 4]{3}$
Hence, the correct answer is Option A
Question 4:Â If $3 \sec \theta + 4 \cos \theta – 4\sqrt{3} = 0$ where $\theta$ is an acute angle then the value of $\theta$ is:
a)Â $20^\circ$
b)Â $30^\circ$
c)Â $60^\circ$
d)Â $45^\circ$
4) Answer (B)
Solution:
$3\sec\theta+4\cos\theta-4\sqrt{3}=0$
$\frac{3}{\cos\theta\ }+4\cos\theta-4\sqrt{3}=0$
$4\cos^2\theta-4\sqrt{3}\cos\theta\ +3=0$
$4\cos^2\theta-2\sqrt{3}\cos\theta\ -2\sqrt{3}\cos\theta+3=0$
$2\cos\theta\ \left(2\cos\theta-\sqrt{3}\right)\ -\sqrt{3}\left(2\cos\theta-\sqrt{3}\right)=0$
$\ \left(2\cos\theta-\sqrt{3}\right)\left(2\cos\theta-\sqrt{3}\right)=0$
$\ \left(2\cos\theta-\sqrt{3}\right)^2=0$
$\ 2\cos\theta-\sqrt{3}=0$
$\cos\theta=\frac{\sqrt{3}}{2}$
$\theta=30^{\circ\ }$
Hence, the correct answer is Option B
Question 5:Â If $3 \tan \theta = 2\sqrt{3} \sin \theta, 0^\circ < \theta < 90^\circ$, then find the value of $2 \sin^2 2\theta – 3 \cos^2 3\theta$.
a)Â 1
b)Â $\frac{3}{2}$
c)Â $\frac{1}{2}$
d)Â $-\frac{3}{2}$
5) Answer (B)
Solution:
$3\tan\theta=2\sqrt{3}\sin\theta$
$3\frac{\sin\theta\ }{\cos\theta\ }=2\sqrt{3}\sin\theta$
$\cos\theta\ =\frac{3}{2\sqrt{3}}$
$\cos\theta\ =\frac{\sqrt{3}}{2}$
$\theta\ =30^{\circ\ }$ [$0^\circ < \theta < 90^\circ$]
$2\sin^22\theta-3\cos^23\theta=2\sin^260^{\circ\ }-3\cos^290^{\circ\ }$
=Â $2\left(\frac{\sqrt{3}}{2}\right)^2-3\left(0\right)^2$
=Â $\frac{3}{2}$
Hence, the correct answer is Option B
Take a free SSC CHSL Tier-1 mock test
Download SSC CGL Tier-1 Previous Papers PDF
Question 6:Â Find the value of $\sin^2 60^\circ + \cos^2 30^\circ – \sin^2 45^\circ – 3 \sin^2 90^\circ$.
a)Â $\frac{1}{3}$
b)Â $-1\frac{3}{4}$
c)Â $-2\frac{1}{2}$
d)Â $-2$
6) Answer (D)
Solution:
$\sin^260^{\circ}+\cos^230^{\circ}-\sin^245^{\circ}-3\sin^290^{\circ}=\left(\frac{\sqrt{3}}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2-\left(\frac{1}{\sqrt{2}}\right)^2-3\left(1\right)^2$
$=\frac{3}{4}+\frac{3}{4}-\frac{1}{2}-3$
$=\frac{3+3-2-12}{4}$
$=\frac{-8}{4}$
$=-2$
Hence, the correct answer is Option D
Question 7:Â The value of $\frac{\sec^2 60^\circ \cos^2 45^\circ + \cosec^2 30^\circ}{\cot 30^\circ \sec^2 45^\circ – \cosec^2 30^\circ \tan 45^\circ}$ is:
a)Â $-3(2 + \sqrt{3})$
b)Â $3(2 – \sqrt{3})$
c)Â $-3(2 – \sqrt{3})$
d)Â $3(2 + \sqrt{3})$
7) Answer (A)
Solution:
$\frac{\sec^260^{\circ}\cos^245^{\circ}+\operatorname{cosec}^230^{\circ}}{\cot30^{\circ}\sec^245^{\circ}-\operatorname{cosec}^230^{\circ}\tan45^{\circ}}=\frac{\left(2\right)^2.\left(\frac{1}{\sqrt{2}}\right)^2+\left(2\right)^2}{\left(\sqrt{3}\right)\left(\sqrt{2}\right)^2-\left(2\right)^2.\left(1\right)}$
$=\frac{4\times\frac{1}{2}+4}{2\sqrt{3}-4}$
$=\frac{6}{2\sqrt{3}-4}$
$=\frac{3}{\sqrt{3}-2}$
$=\frac{3}{\sqrt{3}-2}\times\frac{\sqrt{3}+2}{\sqrt{3}+2}$
$=\frac{3\left(\sqrt{3}+2\right)}{3-4}$
$=-3\left(2+\sqrt{3}\right)$
Hence, the correct answer is Option A
Question 8:Â If $\sin^2 \theta = 2 \sin \theta – 1, 0^\circ \leq \theta \leq 90^\circ $, then find the value of: $\frac{1 + \cosec \theta}{1 – \cos \theta}$.
a)Â -2
b)Â 1
c)Â 2
d)Â -1
8) Answer (C)
Solution:
$\sin^2\theta=2\sin\theta-1$
$\sin^2\theta-2\sin\theta+1=0$
$\left(\sin\theta-1\right)^2=0$
$\sin\theta-1=0$
$\sin\theta=1$
$0^{\circ}\le\theta\le90^{\circ}$
$\Rightarrow$Â Â $\theta=90^{\circ}$
$\frac{1+\operatorname{cosec}\theta}{1-\cos\theta}=\frac{1+\operatorname{cosec}90^{\circ\ }}{1-\cos90^{\circ\ }}$
$=\frac{1+1\ }{1-0\ }$
$=2$
Hence, the correct answer is Option C
Question 9:Â Simplify $\sec^2 \alpha \left(1 + \frac{1}{\cosec \alpha}\right)\left(1 – \frac{1}{\cosec \alpha}\right)$.
a)Â $\tan^4 \alpha$
b)Â $\sin^2 \alpha$
c)Â 1
d)Â -1
9) Answer (C)
Solution:
$\sec^2\alpha\left(1+\frac{1}{\operatorname{cosec}\alpha}\right)\left(1-\frac{1}{\operatorname{cosec}\alpha}\right)=\frac{1}{\cos^2\alpha}\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)$
$=\frac{1}{\cos^2\alpha}\left(1-\sin^2\alpha\right)$
$=\frac{1}{\cos^2\alpha}\left(\cos^2\alpha\right)$
$=1$
Hence, the correct answer is Option C
Question 10:Â In $\triangle$ABC, right angled at B, if cot A = $\frac{1}{2}$, then the value of $\frac{\sin A(\cos C + \cos A)}{\cos C(\sin C – \sin A)}$ is
a)Â 3
b)Â -3
c)Â -2
d)Â 2
10) Answer (B)
Solution:
cot A =Â $\frac{\text{Adjacent side}}{\text{Opposite side}}$Â $\frac{1}{2}$
$\frac{\sin A(\cos C + \cos A)}{\cos C(\sin C – \sin A)}$ =Â $\frac{\frac{2}{\sqrt{5}}\left(\frac{2}{\sqrt{5}}+\frac{1}{\sqrt{5}}\right)}{\frac{2}{\sqrt{5}}\left(\frac{1}{\sqrt{5}}-\frac{2}{\sqrt{5}}\right)}$
=Â $\frac{\left(\frac{3}{\sqrt{5}}\right)}{\left(-\frac{1}{\sqrt{5}}\right)}$
= -3
Hence, the correct answer is Option B
Question 11:Â If $\tan \theta + 3 \cot \theta – 2\sqrt{3} = 0, 0^\circ < \theta < 90^\circ$, then what is the value of $(\cosec^2 \theta + \cos^2 \theta)?$
a)Â $\frac{2}{3}$
b)Â $\frac{19}{12}$
c)Â $\frac{14}{3}$
d)Â $\frac{11}{12}$
11) Answer (B)
Solution:
$\tan\theta+3\cot\theta-2\sqrt{3}=0$
$\tan\theta+\frac{3}{\tan\theta\ }-2\sqrt{3}=0$
$tan^2\theta-2\sqrt{3}\tan\theta\ +3=0$
$\left(\tan\theta\ -\sqrt{3}\right)^2=0$
$\tan\theta\ -\sqrt{3}=0$
$\tan\theta\ =\sqrt{3}$
$0^\circ < \theta < 90^\circ$
$\Rightarrow$Â Â $\theta\ =60^{\circ\ }$
$\operatorname{cosec}^2\theta+\cos^2\theta=\operatorname{cosec}^260^{\circ\ }+\cos^260^{\circ\ }$
=Â $\left(\frac{2}{\sqrt{3}}\right)^2\ +\left(\frac{1}{2}\right)^2$
=Â $\frac{4}{3}\ +\frac{1}{4}$
=Â $\frac{16+3}{12}$
=Â $\frac{19}{12}$
Hence, the correct answer is Option B
Question 12:Â If $\sin \alpha + \sin \beta = \cos \alpha + \cos \beta = 1$, then $\sin \alpha + \cos \alpha =$?
a)Â -1
b)Â 0
c)Â 1
d)Â 2
12) Answer (C)
Solution:
$\sin\alpha+\sin\beta=1$
$\sin^2\alpha+\sin^2\beta+2\sin\alpha\ \sin\beta\ =1$……(1)
$\cos\alpha+\cos\beta=1$
$\cos^2\alpha+\cos^2\beta+2\cos\alpha\ \cos\beta\ =1$……(2)
Adding (1) and (2),
$\left(\sin^2\alpha\ +\cos^2\alpha\right)+\left(\sin^2\beta\ +\cos^2\beta\right)+2\sin\alpha\ \sin\beta\ +2\cos\alpha\ \cos\beta\ =1+1$
$1+1+2\sin\alpha\ \sin\beta\ +2\cos\alpha\ \cos\beta\ =2$
$2\left[\cos\alpha\ \cos\beta+\sin\alpha\ \sin\beta\right]=0$
$\cos\left(\beta-\alpha\right)=0$
$\beta-\alpha=90^{\circ\ }$
$\beta\ =90^{\circ\ }+\alpha\ $
$\sin\alpha+\sin\beta=1$
$\sin\alpha+\sin\left(90^{\circ}-\alpha\ \right)=1$
$\sin\alpha+\cos\alpha=1$
Hence, the correct answer is Option C
Question 13:Â Find the value of $\operatorname{cosec}(60^{\circ}+A)-\sec(30^{\circ}-A)+\frac{\operatorname{cosec}49^{\circ}}{\sec41^{\circ}}$.
a)Â 1
b)Â 0
c)Â -1
d)Â 2
13) Answer (A)
Solution:
$\operatorname{cosec}(60^{\circ}+A)-\sec(30^{\circ}-A)+\frac{\operatorname{cosec}49^{\circ}}{\sec41^{\circ}}$
=Â $\operatorname{cosec}(60^{\circ}+A)-\sec(90^{\circ}-60^{\circ}-A)+\frac{\operatorname{cosec}49^{\circ}}{\sec\left(90-49\right)^{\circ}}$
$\left[\sec\left(90\ -\theta\right)=\operatorname{cosec}\theta\right]$
=Â $\operatorname{cosec}\left(60^{\circ}+A\right)-\sec\left(90^{\circ}-\left(60^{\circ}+A\right)\right)+\frac{\operatorname{cosec}49^{\circ}}{\operatorname{cosec}49^{\circ}}$
=Â $\operatorname{cosec}\left(60^{\circ}+A\right)-\operatorname{cosec}\left(60^{\circ}+A\right)+1$
= 1
Hence, the correct answer is Option A
Question 14:Â If $\frac{1}{1 – \sin \theta} + \frac{1}{1 + \sin \theta} = 4 \sec \theta, 0^\circ < \theta < 90^\circ$, then the value of $\cot\theta+\operatorname{cosec}\theta$ is:
a)Â $\frac{4\sqrt{3}}{3}$
b)Â $\sqrt{3}$
c)Â $\frac{5\sqrt{3}}{3}$
d)Â $3\sqrt{3}$
14) Answer (B)
Solution:
$\frac{1}{1-\sin\theta}+\frac{1}{1+\sin\theta}=4\sec\theta$
$\frac{1+\sin\theta\ +1-\sin\theta\ }{1-\sin^2\theta}=\frac{4}{\cos\theta}$
$\frac{2}{\cos^2\theta}=\frac{4}{\cos\theta}$
$\cos\theta=\frac{1}{2}$
$0^\circ < \theta < 90^\circ$
$\Rightarrow$Â Â $\theta=60^{\circ}$
$\cot\theta+\operatorname{cosec}\theta=\cot60^{\circ}+\operatorname{cosec}60^{\circ}$
=Â $\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}}$
=Â $\frac{3}{\sqrt{3}}$
=Â $\sqrt{3}$
Hence, the correct answer is Option B
Question 15:Â $(\operatorname{cosec}A-\cot A)(1+\cos A)=?$
a)Â $\cos A$
b)Â $\sin A$
c)Â $\cot A$
d)Â $\cosec A$
15) Answer (B)
Solution:
$(\operatorname{cosec}A-\cot A)(1+\cos A)=\left(\frac{1}{\sin A}-\frac{\cos A}{\sin A}\right)\left(1+\cos A\right)$
=Â $\left(\frac{1-\cos A}{\sin A}\right)\left(1+\cos A\right)$
=Â $\left(\frac{1-\cos^2A}{\sin A}\right)$
=Â $\frac{\sin^2A}{\sin A}$
=Â $\sin A$
Hence, the correct answer is Option B
Question 16:Â If $0^\circ < \theta < 90^\circ, \sqrt{\frac{\sec^2 \theta + \cosec^2 \theta}{\tan^2 \theta – \sin^2 \theta}}$ is equal to:
a)Â $\sec^3 \theta$
b)Â $\cosec^3 \theta$
c)Â $\sin^2 \theta$
d)Â $\sec^2 \theta$
16) Answer (B)
Solution:
$\sqrt{\frac{\sec^2\theta+\operatorname{cosec}^2\theta}{\tan^2\theta-\sin^2\theta}}=\sqrt{\frac{\frac{1}{\cos^2\theta}+\frac{1}{\sin^2\theta}}{\frac{\sin^2\theta\ }{\cos^2\theta}-\sin^2\theta}}$
$=\sqrt{\frac{\frac{\sin^2\theta+\cos^2\theta\ }{\cos^2\theta\sin^2\theta}}{\frac{\sin^2\theta-\sin^2\theta\cos^2\theta\ }{\cos^2\theta}}}$
$=\sqrt{\frac{1\ }{\cos^2\theta\sin^2\theta}\times\frac{\cos^2\theta\ }{\sin^2\theta\left(1-\cos^2\theta\right)\ }}$
$=\sqrt{\frac{1\ }{\sin^2\theta}\times\frac{1}{\sin^2\theta\left(\sin^2\theta\right)\ }}$
$=\sqrt{\frac{1\ }{\sin^6\theta}\ }$
$=\sqrt{\operatorname{cosec}^6\theta\ }$
$=\operatorname{cosec}^3\theta\ $
Hence, the correct answer is Option B
Question 17:Â If $\frac{\sin^2 \theta}{\tan^2 \theta – \sin^2 \theta} = 5, \theta$ is an acute angle, then the value of $\frac{24\sin^2\theta-15\sec^2\theta}{6\operatorname{cosec}^2\theta-7\cot^2\theta}$ is:
a)Â -2
b)Â 2
c)Â -14
d)Â 14
17) Answer (C)
Solution:
$\frac{\sin^2\theta}{\tan^2\theta-\sin^2\theta}=5$
$\frac{\sin^2\theta}{\frac{\sin^2\theta\ }{\cos^2\theta\ }-\sin^2\theta}=5$
$\frac{\sin^2\theta}{\sin^2\theta\ \left(\frac{1\ }{\cos^2\theta\ }-1\right)}=5$
$\frac{\cos^2\theta}{1-\cos^2\theta\ }=5$
$\frac{\cos^2\theta}{\sin^2\theta\ \ }=5$
$\cot^2\theta\ \ =5$
$\operatorname{cosec}^2\theta\ =1+\cot^2\theta\ =1+5=6$
$\sin^2\theta=\frac{1}{\operatorname{cosec}^2\theta}\ =\frac{1}{6}$
$\cos^2\theta\ =1-\sin^2\theta=1-\frac{1}{6}=\frac{5}{6}$
$\sec^2\theta\ =\frac{1}{\cos^2\theta\ }=\frac{6}{5}$
$\frac{24\sin^2\theta-15\sec^2\theta}{6\operatorname{cosec}^2\theta-7\cot^2\theta}=\frac{24\left(\frac{1}{6}\right)-15\left(\frac{6}{5}\right)}{6\left(6\right)-7\left(5\right)}$
$=\frac{4-18}{36-35}$
$=-14$
Hence, the correct answer is Option C
Question 18:Â The value of $\sec^4 \theta (1 – \sin^4 \theta) – 2 \tan^2 \theta$ is:
a)Â $\frac{1}{2}$
b)Â 1
c)Â -1
d)Â 0
18) Answer (B)
Solution:
$\sec^4\theta(1-\sin^4\theta)-2\tan^2\theta=\sec^4\theta\ -\sec^4\theta\ \sin^4\theta\ -2\tan^2\theta\ $
$=\sec^4\theta\ -\frac{\sin^4\theta}{\cos^4\theta\ }\ -2\tan^2\theta\ $
$=\sec^4\theta\ -\tan^4\theta-2\tan^2\theta\ $
$=\left(\sec^2\theta\ +\tan^2\theta\ \right)\left(\sec^2\theta\ -\tan^2\theta\ \right)-2\tan^2\theta\ $
$=\left(\sec^2\theta\ +\tan^2\theta\ \right)\left(1\right)-2\tan^2\theta\ $
$=\sec^2\theta\ +\tan^2\theta\ -2\tan^2\theta\ $
$=\sec^2\theta\ -\tan^2\theta\ $
$=1$
Hence, the correct answer is Option B
Question 19:Â The value of $\sin^2 60^\circ \cos^2 45^\circ + 2 \tan^2 60^\circ – \cosec^2 30^\circ$ is equal to:
a)Â $\frac{17}{24}$
b)Â $\frac{19}{8}$
c)Â $-\frac{17}{24}$
d)Â $-\frac{19}{8}$
19) Answer (B)
Solution:
$\sin^260^{\circ}\cos^245^{\circ}+2\tan^260^{\circ}-\operatorname{cosec}^230^{\circ}=\left(\frac{\sqrt{3}}{2}\right)^2.\left(\frac{1}{\sqrt{2}}\right)^2+2\left(\sqrt{3}\right)^2-\left(2\right)^2$
$=\frac{3}{4}.\frac{1}{2}+2\left(3\right)-4$
$=\frac{3}{8}+6-4$
$=\frac{3}{8}+2$
$=\frac{3+16}{8}$
$=\frac{19}{8}$
Hence, the correct answer is Option B
Question 20:Â The value of $\frac{\tan13^{\circ}\tan36^{\circ}\tan45^{\circ}\tan54^{\circ}\tan77^{\circ}}{2\sec^260^{\circ}(\sin^260^{\circ}-3\cos60^{\circ}+2)}$ is:
a)Â $\frac{1}{10}$
b)Â $-\frac{1}{4}$
c)Â $\frac{1}{4}$
d)Â $-\frac{1}{10}$
20) Answer (A)
Solution:
$\frac{\tan13^{\circ}\tan36^{\circ}\tan45^{\circ}\tan54^{\circ}\tan77^{\circ}}{2\sec^260^{\circ}(\sin^260^{\circ}-3\cos60^{\circ}+2)}=\frac{\tan13^{\circ}\tan36^{\circ}\left(1\right)\tan\left(90-36^{\circ}\right)\tan\left(90-13^{\circ\ }\right)}{2\left(2\right)^2\left(\left(\frac{\sqrt{3}}{2}\right)^2-3\left(\frac{1}{2}\right)+2\right)}$
$=\frac{\tan13^{\circ}\tan36^{\circ}\cot36^{\circ}\cot13^{\circ\ }}{2\left(4\right)\left(\frac{3}{4}-\frac{3}{2}+2\right)}$
$=\frac{1}{8\left(\frac{3-6+8}{4}\right)}$
$=\frac{1}{2\left(5\right)}$
$=\frac{1}{10}$
Hence, the correct answer is Option A