SSC Questions on Trigonometry PDF
Download SSC Questions on Trigonometry PDF based on previous papers very useful for SSC Exams. Top-10 Very Important Trigonometry Questions for SSC Exam.
Download SSC Questions on Trigonometry PDF
Get 200 SSC mocks for just Rs. 249. Enroll here
Question 1: $5tan\theta = 4$, then the value of $(\frac{5sin\theta – 3cos\theta}{5sin\theta + 3cos\theta})$ is
a) $\frac{1}{7}$
b) $\frac{2}{7}$
c) $\frac{5}{7}$
d) $\frac{2}{5}$
Question 2: The least value of $(4sec^2\theta + 9cosec^2\theta)$ is
a) 1
b) 19
c) 25
d) 7
Question 3: If $x=cosec\theta-sin\theta$ and $y=sec\theta-cos\theta$, then the value of $x2y2(x2 + y2 + 3)$
a) 0
b) 1
c) 2
d) 3
Question 4: If $ 0 \leq \theta \leq \frac{\pi}{2}$, $2ycos\theta=sin\theta$ and $\frac{x}{2cosec\theta}=y$, then the value of $x^2-4y^2$ is
a) 1
b) 2
c) 3
d) 4
Take a free mock test for SSC CGL
Download SSC CGL Previous Papers PDF
18000+ Questions – Free SSC Study Material
Question 5: If $sin\theta + \sin^2\theta = 1$, then the value of cos12$\theta$ + 3cos10$\theta$ + cos6$\theta$ + 3cos8$\theta$ – 1 is
a) 0
b) 1
c) -1
d) 2
Question 6: The value of $\frac{1}{cosec\theta – cot\theta} – \frac{1}{sin\theta}$
a) $cot\theta$
b) $cosec\theta$
c) $tan\theta$
d) $1$
Question 7: If $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$, then $\cos\theta – \sin\theta$ is
a) -$\sqrt{2}\cos\theta$
b) -$\sqrt{2}\sin\theta$
c) $\sqrt{2}\sin\theta$
d) $\sqrt{2}\tan\theta$
More SSC CGL Important Questions and Answers PDF
Question 8: If $cos^4\theta-sin^4\theta=\frac{2}{3}$, then the value of $1-2sin^2\theta$ is,
a) 0
b) $\frac{2}{3}$
c) $\frac{1}{3}$
d) $\frac{4}{3}$
Question 9: If $tan\theta$ = 3/4 and $\theta$ is acute, then $cosec\theta$ is equal to
a) $\frac{5}{3}$
b) $2$
c) $\frac{1}{2}$
d) $4$
Question 10: The value of $\frac{1}{1 + tan^2\theta}$ + $\frac{1}{1 + cot^2\theta}$ is
a) 1
b) 2
c) $\frac{1}{2}$
d) $\frac{1}{4}$
SSC CGL Previous Papers Download PDF
Answers & Solutions:
1) Answer (A)
Taking $cos\theta$ outside in numerator and in denominator and making $tan\theta$
hence eq will be $(\frac{5tan\theta – 3}{5tan\theta + 3})$
As it is given that $5tan\theta$ = 4
after putting values and solving we will get the equation reduced to 1/7.
2) Answer (A)
$4sec^2\theta+9cosec^2\theta$
or $4+4tan^2\theta+9+9cot^2\theta$
or $13+4tan^2\theta+9cot^2\theta$
or $ 13+4tan^2\theta+\frac{9}{tan^2\theta} $
or $ 13-12+(2tan\theta+\frac{3}{tan\theta})^2 $ (eq. (1) )
or now above expression to be minimum, equation $(2tan\theta+\frac{3}{tan\theta})^2$ should be minimum.
So applying $A.M.\geq G.M. $
$\frac{(2tan\theta +\frac{3}{tan\theta})}{2} \geq \sqrt{6}$
or ${(2tan\theta+\frac{3}{tan\theta})}=2\sqrt{6}$ ( for value to be minimum)
After putting above value in eq.(1) , we will get least value of expression as 25.
3) Answer (B)
$x=cosec\theta – sin\theta=\frac{cos^2\theta}{sin\theta}=cot\theta cos\theta$
Similarly $y=tan\theta sin\theta$
$xy=sin\theta cos\theta$
$x^2+y^2+3=(sec^2\theta +cosec^2\theta )$
Now putting above values in given equation, and after solving it will be reduced to 1
4) Answer (A)
$2y=tan\theta$
$x=2ycosec\theta$
Hence value of $x^2 – 4y^2 $ = $4y^2(cosec^2\theta – 1)$
or $tan^2\theta cot^2\theta$ = 1
5) Answer (A)
Given equation can be written as $(cos^4\theta + cos^2\theta)^3 -1$
as $sin\theta + sin^2\theta = 1$
or $sin\theta = cos^2\theta$
putting above value in given equation it will be
$(sin^2\theta + sin\theta)^3 -1 = 0$
6) Answer (A)
$\frac{sin\theta}{1-cos\theta} – \frac{1}{sin\theta}$
or $\frac{cos\theta – cos^2\theta}{(1-cos\theta)sin\theta}$ = $cot\theta$
7) Answer (C)
$\sin^2 \theta + \cos^2 \theta = 1$
So, $\sin^2 \theta + \cos^2 \theta + 2\sin\theta * \cos \theta = 2 \cos^2\theta$
Hence, $\cos^2 \theta – \sin^2 \theta = 2 \sin\theta*\cos\theta$
So, $\cos\theta – \sin\theta = \sqrt{2}\sin\theta$
8) Answer (B)
$cos^4\theta-sin^4\theta=(cos^2\theta-sin^2\theta)(cos^2\theta+sin^2\theta)=cos^2\theta-sin^2\theta=\frac{2}{3}$
$cos^2\theta-sin^2\theta =1-2sin^2\theta=\frac{2}{3}$
9) Answer (A)
$\frac{sin \theta}{cos \theta} = \frac{3}{4}$
So, $\frac{sin^2\theta}{cos^2\theta}=\frac{9}{16}$
Hence, $sin^2 \theta = \frac{9}{9+16}=\frac{9}{25}$
So, $cosec \theta = \frac{5}{3}$
10) Answer (A)
$1 + \tan ^2 \theta = \sec ^2 \theta$
$1 + \cot ^2 \theta = \csc ^2 \theta$
So, the given fraction becomes,
$\frac{1}{\sec ^2 \theta} + \frac{1}{\csc ^2 \theta} = \sin^2\theta + \cos^2 \theta = 1$
Get 200 SSC mocks for just Rs. 249. Enroll here
We hope this Trigonometry Questions for SSC Exams will be highly useful for your preparation.