SSC CGL Trigonometry Previous Year Questions PDF

0
4939
SSC CGL Trigonometry Previous Year Questions PDF
SSC CGL Trigonometry Previous Year Questions PDF

SSC CGL Trigonometry Previous Year Questions PDF

Download SSC CGL Trigonometry Questions with answers PDF based on previous papers very useful for SSC CGL exams. Very important Trigonometry Questions for SSC exams.

Download SSC CGL Trigonometry Previous Year Questions PDF

Take a free SSC CGL mock test

Get 200 SSC mocks for just Rs. 249. Enroll here

Question 1: A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angle of elevation of the bottom of the flag staff is $\alpha$ and that of the top of the flag staff is $\beta$. Then the height of the tower is

a) $h \tan \alpha$

b) $\frac{h \tan \alpha}{\tan \beta – \tan \alpha}$

c) $\frac{h \tan \alpha}{\tan \alpha – \tan \beta}$

d) None of these

Question 2: If $2y \cos \theta = x \sin \theta  and  2x \sec \theta – y \cosec \theta = 3$, then the value of $x^2 + 4y^2$ is

a) 1

b) 2

c) 3

d) 4

Question 3: If $(a^2 – b^2)\sin \theta + 2ab \cos \theta = a^2 + b^2$, then $\tan \theta =$

a) $\frac{2ab}{a^2 – b^2}$

b) $\frac{a^2 – b^2}{2ab}$

c) $\frac{ab}{a^2 – b^2}$

d) $\frac{a^2 – b^2}{ab}$

Question 4: For $ 0^\circ < \theta < 90^\circ$, $tan\theta + cot\theta$ = 2 is equal to:

a) $30^\circ$

b) $60^\circ$

c) $45^\circ$

d) $0^\circ$

Question 5: If $\theta = 9^\circ$, then what is the value of
$\cot \theta \cot 2\theta \cot 3\theta \cot 4\theta \cot 5\theta \cot 6\theta \cot 7\theta \cot 8\theta \cot 9\theta$ ?

a) $\sqrt3$

b) $\sqrt3 – 1$

c) 1

d) $\frac{1}{\sqrt3}$

SSC CGL Previous Papers Download PDF

SSC CGL Free Mock Test

Question 6: $\theta$ being an acute angle, it is given that $\sec^2 \theta + 4 \tan^2 \theta = 6$. What is the value of $\theta$ ?

a) $60^\circ$

b) $45^\circ$

c) $0^\circ$

d) $30^\circ$

Question 7: What is the simplified value of $\frac{\sin^3 21^\circ + \cos^3 19^\circ}{\sin 21^\circ + \cos 19^\circ} + \sin^2 69^\circ + \cos^2 71^\circ + \frac{1}{\sec 69^\circ \cosec 71^\circ}$ is:

a) 2

b) 1

c) 4

d) 3

Question 8: If $\sin \theta + \cosec \theta = 2$, then what is the value of $\sin^{153} \theta + \cosec^{253} \theta$ ?

a) $\frac{1}{153 \times 253}$

b) $\frac{253}{153}$

c) 2

d) $\frac{153}{253}$

Question 9: If $\cos x = \frac{-\sqrt3}{2}  and  \pi < x < \frac{3\pi}{2}$, then the value of $4 \cot^2 x – 3 \cosec^2 x$ is:

a) 8

b) 0

c) 2

d) 1

Question 10: If $7(\cosec^2 55^\circ – \tan^2 35^\circ) + 2 \sin 90^\circ – \tan^2 52^\circ y \tan^2 38^\circ = \frac{y}{2}$, then the value of $y$ is:

a) 2

b) 3

c) 6

d) 1

FREE SSC EXAM YOUTUBE VIDEOS

18000+ Questions – Free SSC Study Material

Answers & Solutions:

1) Answer (B)

2) Answer (D)

$let \theta  = 45\degree$

$2y \frac{1}{\sqrt{2}} = x\frac{1}{\sqrt{2}} $ = 2y= x

$ 2x \sqrt{2} – y \sqrt{2} = 3$

2x – y = $\frac{3}{\sqrt{2}}$ {substituting y= $\frac{x}{2}$}

x= $ \sqrt{2}$

y= $\frac{1}{ \sqrt{2}}$

value of $x^2 + 4y^2$ = $\sqrt{2}^2 + 4\frac{1}{ \sqrt{2}^2}$ = 2+2 = 4

 

3) Answer (B)

$(a^2 – b^2)\sin \theta + 2ab \cos \theta = a^2 + b^2$

divide it by $ a^2 + b^2$

we get

$\frac{(a^2 – b^2)\sin \theta}{a^2 + b^2} + \frac{2ab \cos \theta}{a^2 + b^2} = 1$ ($\because \sin^2 \theta + \cos^2 \theta = 1$)

here $\sin \theta = \frac{(a^2 – b^2)}{a^2 + b^2} $

$\cos \theta = \frac{2ab}{a^2 + b^2} $

$\tan \theta = \frac{\sin \theta}{\cos \theta}$= $ \frac{(a^2 – b^2)}{2ab}$

4) Answer (C)

If $tan\theta + cot\theta$ = 2

Then $\tan\theta+\frac{1}{\tan\theta\ }=2$

If the sum of a number and its reciprocal is equal to then the number is equal to 1

So, $\tan\theta\ =1=45^{^{\circ\ }}$

5) Answer (C)

Give, $\theta = 9^\circ$

$\cot \theta \cot 2\theta \cot 3\theta \cot 4\theta \cot 5\theta \cot 6\theta \cot 7\theta \cot 8\theta \cot 9\theta$

$\cot 9^\circ \cot 18^\circ \cot 27^\circ \cot 36^\circ \cot 45^\circ \cot54^\circ \cot63^\circ \cot 72^\circ \cot 81^\circ$

$\cot 9^\circ \cot 81^\circ\cot 18^\circ\cot 72^\circ\cot 27^\circ\cot63^\circ\cot 36^\circ \cot54^\circ\cot 45^\circ$

$\cot(90^\circ – 81^\circ)\cot81^\circ\cot(90^\circ – 72^\circ)\cot72^\circ\cot(90^\circ – 63^\circ)\cot63^\circ\cot(90^\circ – 54^\circ)\cot54^\circ\cot45^\circ$

$\tan81^\circ\cot81^\circ\tan72^\circ\cot72^\circ\tan63^\circ\cot63^\circ\tan54^\circ\cot54^\circ\cot45^\circ=1$.

As $\tan\theta\times\cot\theta=1 and \cot45^\circ=1$

So we get our answer as 1

 

6) Answer (B)

$\sec^2 \theta + 4 \tan^2 \theta = 6$

$(1+tan^2 \theta) + 4 \tan^2 \theta = 6$

$5 \tan^2 \theta = 5$

$\tan^2 \theta=1$

$\tan \theta=1$

$\tan\theta=45^\circ$

$\theta=45^\circ$

7) Answer (A)

8) Answer (C)

$\sin \theta + \cosec \theta = 2$

$\sin \theta +\frac{1}{\sin \theta} = 2$

Let $\sin \theta = x$

$x+\frac{1}{x} = 2$

If sum of a number and its reciprocal is 2 then number will be 1

So, $\sin \theta = 1$

$\sin^{153} \theta + \cosec^{253} \theta$ = $1^{153}+1^{253}=2$

9) Answer (B)

As Given in Question :

$\cos x =  \frac {-\sqrt3}{2}$

$\Rightarrow \cos x = -\cos 30^{\circ}$

$\Rightarrow \cos x = -\cos 30^{\circ} = \cos (180 + 30)^{\circ}$     [ $\because -\cos \theta = \cos (180 + \theta ) ]$

$\therefore \cos x = \cos 210^{\circ}$

$\Rightarrow x=210^{\circ}$

Now  $4 \cot^2 x – 3 \cosec^2 x$

$\Rightarrow 4 \cot^2 210^{\circ} – 3 \cosec^2 210^{\circ}$

$\Rightarrow 4 (\sqrt3)^2 – 3 (-2)^2 $  $ [ \because \cot (180 + \theta) = \cot \theta , \cosec (180+\theta) = -\cosec \theta] $

$\Rightarrow 4\times3 – 3\times4$

$\Rightarrow 12 – 12 = 0$

10) Answer (C)

SSC Free Previous Papers App

We hope this Trigonometry Questions for SSC CGL Exam preparation is so helpful to you.

LEAVE A REPLY

Please enter your comment!
Please enter your name here