0
913

# SBI PO Approximation Questions PDF

Approximation Questions for SBI PO Prelims and Mains exam. Download SBI PO Approximation questions on with solutions.

Instructions

What approximate value will come at the place of question mark ‘?’ in the following question?

Question 1: $27\%$ of $?^4 = 24.3 * 6.94$

a) 6.5

b) 4

c) 7

d) 4.5

e) 5

Question 2: $273.98 * \frac{3}{7} + \sqrt{840}$ = ?

a) 172

b) 146

c) 158

d) 134

e) 150

Question 3: 18.94% of 264 + ? + 33.1% of 327 = 451

a) 280.38

b) 314.12

c) 292.84

d) 324.72

e) 286.66

Question 4: $\frac{\sqrt{2} * (97.97 + ?^2)}{4.24} = 49$

a) 9

b) 11.5

c) 8

d) 7

e) 6.5

Question 5: $27.99^2 / 3 + ? = 167.05 + 17*10.4$

a) 65.7

b) 82.5

c) 78.3

d) 73.5

e) 69.3

Instructions

What approximate value will come at the place of question mark ‘?’ in the following question?

Question 6: ?% of $6.02^4$ = 9.1*19.9

a) 24

b) 12

c) 17

d) 21

e) 14

Question 7: 66.69% of (22.5% of (16.48% of 250.49) = ?

a) 5.4

b) 6.2

c) 6.8

d) 7.2

e) 5.8

Question 8: 51.49% of 636 – 82.08% of 211 = ?

a) 143.3

b) 161.3

c) 154.5

d) 171.3

e) 182.5

Question 9: $\frac{\sqrt{421+364} + ?^3}{14.89}$ = 90.6

a) 14

b) 15

c) 13

d) 11

e) 17

Question 10: $18.98^2 + ? = 31.994 * 17.017 + 574.98/5$

a) 324

b) 298

c) 276

d) 282

e) 304

Question 11: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{29.96}{5.08} – \frac{7.99}{4.01} + \frac{31.97}{7.94}$

a) $6$

b) $7$

c) $8$

d) $9$

e) $10$

Question 12: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{107.94}{2.99*3.02} – \frac{44.92}{8.97}$

a) $6$

b) $7$

c) $8$

d) $9$

e) $10$

Question 13: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{71.94}{8.99} * \frac{62.91}{7.02}$

a) $64$

b) $72$

c) $80$

d) $81$

e) $63$

Question 14: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$50.011 – \frac{35.996}{42.007} *48.998$

a) $6$

b) $7$

c) $8$

d) $9$

e) $10$

Question 15: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value)
$\frac{\sqrt{80.98 * 440}}{6.99}$

a) $24$

b) $27$

c) $30$

d) $32$

e) $36$

Instructions

What approximate value will come at the place of question mark ‘?’ in the following question?

Question 16: ? % of $6.998^{3} = 21 \times 23.7$

a) 156

b) 134

c) 187

d) 161

e) 145

Question 17: 125% of 852 + 64.008 * 18.994 = ?

a) 2267

b) 2281

c) 2293

d) 2175

e) 2196

Question 18: (54.98% of 994.97) / (74.08% of 324.05) = ?

a) 2.7

b) 2.1

c) 2.3

d) 3

e) 3.3

Question 19: $\frac{\sqrt[3]{19375 + 5014}+ 28^2}{?}$ = 24.57

a) 27

b) 36

c) 31

d) 33

e) 29

Question 20: $\frac{22.98^{3}}{5}$ + ? = 17.97 * 124.005 + 428.79

a) 199

b) 228

c) 217

d) 245

e) 194

$27\%$ of $?^4$ = 24.3 * 6.94 can be approximately written as
$0.27 * ?^4 = 24.3 * 7$
$0.27 * ?^4 = 170.1$
$?^4 = 630$
? = 5 approx.
Hence, option E is the correct choice.

$273.98 * \frac{3}{7} + \sqrt{840}$ = ? can be approximately written as
$273*\frac{3}{7} + \sqrt{841}$ = ?
117 + 29 = 146 approx.
Hence, option B is the correct choice.

18.94% of 264 + ? + 33.1% of 327 = 451 can be approximately written as
0.19 of 264 + ? + 0.33 * 327 = 451
50.16 + ? + 108 = 451
? = 292.84
Hence, option C is the correct choice.

$\frac{\sqrt{2} * (97.97 + ?^2)}{4.24} = 49$ can be approximately written as,

$\frac{49 * 4.24}{\sqrt{2}} =98 + ?^2$

$49 * 3 = 2*49 + ?^2$
$?^2 = 49$
? = 7
Hence, option D is the correct option.

$27.99^2 / 3 + ? = 167.05 + 17*10.4$ can be approximately written as
$28^2 / 3 + ? = 17*10.4 + 167$
784/3 + ? = 176.8 + 167
? = 343.8 – 261.33 = 82.5 approx.
Hence, option B is the correct choice.

?% of $6.02^4$ = 9.1*19.9
$\frac{2}{3}$ * $\frac{0.9}{4}$ * $\frac{0.33}{2} *250 = ? ? = 6.1875 = 6.2 approx. Hence, option B is the correct choice. 8) Answer (C) 51.49% of 636 – 82.08% of 211 = ? 0.515*636 – 0.82*211 = ? ? = 327.5 – 173 = 154.5 Hence, option c is the correct choice. 9) Answer (D)$\frac{\sqrt{421+364} + ?^3}{14.89}$= 90.6$\frac{\sqrt{785} + ?^3}{15}$= 90.6$\frac{28 + ?^3}{15}$= 90.6 28 +$?^3$= 1359$?^3$= 1331 ? = 11 Hence, option D is the correct option. 10) Answer (B)$18.98^2 + ? = 31.994 * 17.017 + 574.98/5$can be approximately written as$19^2 + ? = 32 * 17 + 575/5361 + ? = 544 + 115? = 298$Hence, option B is the correct choice. 11) Answer (C) The given expression can be approximated to$\frac{30}{5} – \frac{8}{4} + \frac{32}{8}$=$6 – 2 + 4$=$8$. Therefore, option C is the right answer. 12) Answer (B) The given expression can be approximated to$\frac{108}{3*3} – \frac{45}{9}$=$\frac{108}{9} – \frac{45}{9}$=$\frac{63}{9}$=$7$. Therefore, option B is the right answer. 13) Answer (B) The given expression can be approximated to$\frac{72}{9} * \frac{63}{7}$. =$8*9$=$72$Therefore, option B is the right answer. 14) Answer (C) The given expression can be simplified as$50 – \frac{36}{42} *49$=$50 – \frac{6}{7} *49$=$50 – 42$=$8$. Therefore, option C is the right answer. 15) Answer (B) The given expression can be approximated to$\frac{\sqrt{81 * 441}}{7}$=$\frac{9*21}{7}$=$9*3$=$27$. Therefore, option B is the right answer. 16) Answer (E) ?% of$6.998^3 = 21 \times 23.7$can be written as ?% of$7^{3} = 497.3$?% * 343 = 497.3 ?% = 1.45 ? = 145 Hence, option E is the correct choice. 17) Answer (B) 125% of 852 + 64.008 * 18.994 can be approximately written as$\frac{5}{4}$* 852 + 64*19 = 1065 + 1216 = 2281 Hence, option B is the correct choice. 18) Answer (C) (54.98% of 994.97) / (74.08% of 324.05) = ? can be written as$\frac{0.55*995}{0.74*324} = \frac{547.25}{239.76}$= 2.3 approx. Hence, option C is the correct choice. 19) Answer (D)$\frac{\sqrt[3]{19375 + 5014}+ 28^2}{?}$= 24.57 can be written as$\frac{\sqrt[3]{24389}+ 784}{?}$= 24.57 ? =$\frac{29 + 784}{24.57}$= 33 approx. Hence, option D is the correct option. 20) Answer (B)$\frac{22.98^{3}}{5}$+ ? = 17.97 * 124.005 + 428.99 can be approximately written as$\frac{23^{3}}{5}$+ ? = 18 * 124 + 429$\frac{12167}{5}\$ + ? = 2232 + 429