0
442

# SBI Clerk Previous Year Simplification Questions

Download SBI Clerk Simplification Previous Year Questions & Answers PDF for SBI Clerk Prelims and Mains exam. Very Important SBI Clerk Simplification Previous Year questions on with solutions.

Instructions

What should come in place of the question mark (?) in the following question ?

Question 1: ?% of 5600¬28% of 3500=1988

a) 58

b) 55

c) 51

d) 53

e) None of these

Question 2: $\frac{5}{8}+\frac{1}{4}+\frac{7}{12}=?$

a) $1\frac{11}{24}$

b) $1\frac{13}{24}$

c) $1\frac{9}{26}$

d) $1\frac{7}{24}$

e) None of these

Question 3: Simplify: $\sqrt{19+4\sqrt{21}}$

a) $2+\sqrt{26}$

b) $3-\sqrt{15}$

c) $\sqrt{5}+\sqrt{26}$

d) $\sqrt{12}+\sqrt{7}$

Instructions

What should come in place of the question mark (?) in the following question ?

Question 4: $\frac{57}{67}\times\frac{32}{171}\times\frac{45}{128}=?$

a) $\frac{15}{262}$

b) $\frac{15}{268}$

c) $\frac{15}{266}$

d) $\frac{17}{268}$

e) None of these

Question 5: What will come in the place of question mark (?) in the following equation ?
$16^{7.5}\div8^{3.5}\div2^{7.5}$=?

a) $8^{4}$

b) $16^{4}$

c) $2^{15}$

d) $2^{27}$

e) None of these

Question 6: Simplify: $\frac{0.0347 \times 0.0347 \times 0.0347 + (0.9653)^3}{(0.0347)^2 – (0.347)(0.9653) + (0.9653)^2}$

a) 0.9306

b) 1.0009

c) 1.0050

d) 1

Question 7: Simplify the surd $\frac{7 \sqrt{7} – 3 \sqrt{3}}{\sqrt{7} – \sqrt{3}}$

a) $10 + \sqrt{21}$

b) $10 – \sqrt{21}$

c) $\sqrt{21} – 10$

d) $7\sqrt{3} + 3\sqrt{7}$

Instructions

Instructions: What approximate value will come in place of question mark (?) in the following questions? (You are not expected to calculate the exact value.)

Question 8: $4\frac{1}{5} + 5\frac{5}{6} \times \frac{24}{7} \times 2\frac{4}{5}$ = ?

a) 60

b) $60\frac{1}{5}$

c) 44.8

d) 72.6

e) None of these

Instructions

In the following questions, what will come in the place of the question mark (?)

Question 9: $\dfrac{ \sqrt{4225} * \sqrt{?} }{ \sqrt{6400} }$ = 13

a) 225

b) 250

c) 256

d) 275

e) Can’t be determined

Instructions

Find the approximate value of the number which should replace (?) in the following questions.

Question 10: $18.02*21.98 +\sqrt[3]{4923}*2.969 = ?$

a) 487

b) 397

c) 429

d) 447

e) 477

Question 11: What is the value of $1.75^3 – 1.25^3$?

a) 3

b) 3.2

c) 3.4

d) 3.6

Question 12: Simplify the equation: $\frac{31^3 + 22^3}{31^2 + 22^2 – 682}$

a) 9

b) 53

c) 69

d) 93

Instructions

What will come in place of question mark ‘?’ in the following questions?

Question 13: $\frac{4}{9} * \frac{18}{7} * (\frac{14}{3} * 1.5)$ = ?

a) 8

b) 9

c) 12

d) 16

e) 21

Question 14: $6\times 13+6+11-36\div 12$ =?

a) 29

b) 36

c) 64

d) 78

e) 92

Instructions

What value should come in place of the question mark (?) in the following questions?

Question 15: 102-(91-(83-(76-17-61))) is equal to?

a) 69

b) 76

c) 83

d) 96

e) 104

Reframing the question to simplify,

1988+28% of 3500 = 1988+(28*35)

Which reduces to,

1988+980=2968

2968=(x/100)*5600

x=2968/56

x=53

$\frac{5}{8}+\frac{1}{4}+\frac{7}{12}=?$

Simplifying,

$\frac{7}{8}+\frac{7}{12}=?$

The equation reduces to,

7*{(1/8)+(1/12)}=(35/24)

Now converting $\frac{35}{24}$ to mixed fration, we get

$1\frac{11}{24}$

Let $\sqrt{19+4\sqrt{21}} = \sqrt{a}+\sqrt{b}$
$\rightarrow a+b+2\sqrt{ab} = 19+4\sqrt{21}$.
Hence, a+b=19 and ab=84. Hence a=12, b=7.

The expression, on reframing gives, $\frac{57}{171}\times\frac{32}{128}\times\frac{45}{67}$

which on simplifying gives,

(1/4)*(1/3)*(45/67) = (15/268)

As $16,8,2$ are all exponents of $2$, let us simplify the expression to the powers of 2.

$16^{7.5} = (2^4)^{7.5} = 2^{30}$
$8^{3.5} = (2^3)^{3.5} = 2^{10.5}$

Hence, the given expression looks like this $2^{30} \div 2^{10.5} \div 2^{7.5} = 2^{30-10.5-7.5} = 2^{12} = 8^4$

Hence, the correct answer is option (a)

Numerator is of the form of $a^{3} + b^{3}$ and denominator is of the form of  $a^{2} + b^{2} – ab$
where a = .0347 and b= .9653
it will get reduce to a+b = 1

Let $X = \frac{7 \sqrt{7} – 3 \sqrt{3}}{\sqrt{7} – \sqrt{3}}$
Multiplying numerator and denominator by $(\sqrt{7} + \sqrt{3})$,

$X = (49 – 3 \sqrt{21} + 7 \sqrt{21} – 9)/4 = 10 + \sqrt{21}$

We use BEDMAS rule to simplify the expression. We perform multiplication first.
Hence, expression = $4\frac{1}{5} + 5\frac{5}{6} \times \frac{24}{7} \times 2\frac{4}{5}$ = $4\frac{1}{5} + \frac{35*24*14}{6*7*5}$ = $4\frac{1}{5} + 4*14$ = $4\frac{1}{5} + 56$ = $60\frac{1}{5}$ .

Sqrt of 4225 = 65 and sqrt of 6400 = 80. Simplifying, ? = 256

We can approximate $18.02 \approx 18$ and $21.98 \approx 22$
Similarly, note that $17^3 = 4913$. Hence, $\sqrt[3]{4923}\approx 17$
And, $2.969 \approx 3$
Using the above approximations, we can simplify the expression to the below value.
$18*22 + 17*3 = 396 + 51= 447$

To simplify the expression , we use the formula:
$a^3 – b^3$ = $(a-b)(a^2+b^2+ab)$

So, $1.75^3 – 1.25^3$ = (1.75-1.25) * (1.75 ^ 2 + 1.25 ^2 + 1.75 * 1.25) = 0.5 * (3.06 + 1.56 + 2.19) = 3.4

We can solve the equation using the formula $a^3 + b^3$ = (a+b) * ($a^2+b^2$-ab)
So, the answer is 31 + 22 = 53

We have to simplify: $\frac{4}{9} * \frac{18}{7} * \frac{14}{3} * 1.5$
So, the simplified value is $\frac{4}{9} * \frac{18}{7}$ * 14 * 0.5 = $\frac{4}{9} * \frac{18}{7}$ * 7
Cancelling out the 7, we get $\frac{4}{9}$ * 18
So, the simplified value is 4 * 2 = 8

$6\times 13+6+11-36\div 12$ =?
By B.O.D.M.A.S rule, we have to follow Brackets first, followed by “Of”, followed by division, followed by multiplication, followed by multiplication, followed by addition and finally subtraction.
So, $6\times 13+6+11-36\div 12$ becomes $6\times 13+6+11-3$(We simplify division first as there are no brackets or “of”)
$6\times 13+6+11-3$ then becomes 78 + 6 + 11 – 3 after we simplify multiplication
Then we simplify addition to get 95 – 3 = 92