**RBI Grade B Quantitative Aptitude Questions PDF:**

We have provided some RBI Grade-B Quantitative Aptitude questions and answers with detailed explanations. Quant section will have 30 questions in RBI Grade-B exam.

RBI Grade B Quantitative Aptitude Questions PDF

Banking Unlimited Tests – Rs. 499

**Instructions (1 – 5):Â **In the following number series only one number is wrong. Find out the wrong number.

**Question 1:Â **18.3, 20.6, 16, 22.9, 13.7, 2.2, 11.4

a) 2.2

b) 16

c) 22.9

d) 20.6

e) 13.7

**Question 2:** 2, 4, 11, 37, 151, 771, 4633

a) 151

b) 4

c) 37

d) 771

e) 11

**Question 3:** 188, 154, 140, 132, 128, 126, 125

a) 154

b) 132

c) 128

d) 140

e) 126

**Question 4:** 6, 4, 5, 11, 39, 179, 1127

a) 4

b) 39

c) 179

d) 5

e) 11

**Question 5:** 9, 5, 6, 10.5, 23, 61, 183

a) 61

b) 23

c) 10.5

d) 6

e) 5

Solved RBI Grade B Previous Papers

**Instructions (6 – 10):** What will come in place of the question mark (?) in the following number series ?

**Question 6:** 9, 31, 73, 141, (?)

a) 164

b) 280

c) 239

d) 241

e) None of these

**Question 7:** 35, 256, 451, 620, 763, (?)

a) 680

b) 893

c) 633

d) 880

e) None of these

**Question 8:** 130, 139, 155, 180, 216, (?)

a) 260

b) 290

c) 265

d) 996

e) None of these

**Question 9:** 2890, (?), 1162, 874, 730, 658

a) 1684

b) 1738

c) 1784

d) 1672

e) None of these

**Question 10:** 14, 1004, 1202, 1251.5, 1268, (?)

a) 1267.5

b) 1276.25

c) 1324.5

d) 1367.25

e) None of these

**Answers & Solutions forÂ RBI Grade B Quantitative Aptitude Questions PDF:**

**Solutions:**

**1) Answer (A)**

Multiples of 2.3 are alternatively added and subtracted.

$18.3 + (2.3 \times 1) = 20.6$

$20.6Â – (2.3 \times 2) =Â 16$

$16Â + (2.3 \times 3) =Â 22.9$

$22.9Â – (2.3 \times 4) =Â 13.7$

$13.7Â + (2.3 \times 5) =Â 25.2 $$\neq 2.2$$=

$$25.2Â – (2.3 \times 6) =Â 11.4$

**2) Answer (A)**

The pattern followed isÂ :

2 $\times 1 + 2$ = 4

4Â $\times 2 + 3$ =Â 11

11Â $\times 3 + 4$ =Â 37

37Â $\times 4 + 5$ =Â 153 $\neq 151$

153Â $\times 5 + 6$ =Â 771

771Â $\times 6 + 7$ =Â 4633

**3) Answer (A)**

Successive powers of 2 are subtracted.

188 $- 2^5$ = 156 $\neq 154$

156Â $- 2^4$ =Â 140

140Â $- 2^3$ =Â 132

132Â $- 2^2$ =Â 128

128Â $- 2^1$ =Â 126

126Â $- 2^0$ =Â 125

**4) Answer (C)**

The pattern followed isÂ :

6 $\times 1 – 2$ = 4

4Â $\times 2 – 3$ =Â 5

5Â $\times 3 – 4$ =Â 11

11Â $\times 4 – 5$ =Â 39

39Â $\times 5 – 6$ =Â 189 $\neq 179$

189Â $\times 6 – 7$ =Â 1127

**5) Answer (A)**

The series follows the following pattern:

9 * 0.5 + 0.5 = 5

5*1 + 1 = 6

6 * 1.5 + 1.5 = 10.5

10.5 * 2 + 2 = 23

23 * 2.5 + 2.5 = 60

60 * 3 + 3 = 183

Hence, 61 is the incorrect number.

**6) Answer (D)**

The pattern followed isÂ :

$2^3 + 1^2$ = 9

$3^3 + 2^2$ =Â 31

$4^3 + 3^2$ =Â 73

$5^3 + 4^2$ =Â 141

$6^3 + 5^2$ =Â **241**

**7) Answer (D)**

The pattern followed isÂ :

35 + 221 = 256

256 + (221 – 26) = 256 + 195 = 451

451 + (195 – 26) = 451 + 169 = 620

620 + (169 – 26) = 620 + 143 = 763

763 + (143 – 26) = 763 + 117 =Â **880**

**8) Answer (C)**

Squares of natural number starting from 3 are added

130 $+ 3^2$ = 139

139Â $+ 4^2$ =Â 155

155Â $+ 5^2$ =Â 180

180Â $+ 6^2$ =Â 216

216Â $+ 7^2$ =Â **265**

**9) Answer (B)**

Numbers of the form $(72 \times 2^n)$ is subtracted where n is whole number

2890 $- 72 \times 2^4$ =Â **1738
**1738Â $- 72 \times 2^3$ =Â 1162

1162Â $- 72 \times 2^2$ =Â 874

874Â $- 72 \times 2^1$ =Â 730

730Â $- 72 \times 2^0$ =Â 658

**10) Answer (B)**

The pattern followed isÂ :

1004 – 14 = 990

1202 – 1004 = 198 = $(\frac{990}{5})$

1251.5 – 1202 = 49.5Â = $(\frac{198}{4})$

1268 – 1251.5 = 16.5Â = $(\frac{49.5}{3})$

$\therefore$ 1268 + $\frac{16.5}{2}$ =Â 1276.25

=> Ans – (B)