Quadratic Equations Questions for MAH-CET

0
266
Quadratic Equations Questions

Quadratic Equations Questions for MAH-CET

Here you can download a free Quadratic Equations questions PDF with answers for MAH MBA CET 2022 by Cracku. These are some tricky questions in the MAH MBA CET 2022 exam that you need to find the Quadratic Equations of answers for the given questions. These questions will help you to make practice and solve the Quadratic Equations questions in the MAH MBA CET exam. Utilize this best PDF practice set which is included answers in detail. Click on the below link to download the Quadratic Equations MCQ PDF for MBA-CET 2022 for free.

Download Quadratic Equations Questions for MAH-CET

Enroll to MAH-CET 2022 Crash Course

Question 1: I. $x^{2}+3x-28=0$
II. $y^{2} -y-20=0$

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

1) Answer (E)

Solution:

I.$x^{2} + 3x – 28 = 0$

=> $x^2 + 7x – 4x – 28 = 0$

=> $x (x + 7) – 4 (x + 7) = 0$

=> $(x – 4) (x + 7) = 0$

=> $x = 4 , -7$

II.$y^{2} – y – 20 = 0$

=> $y^2 – 5y + 4y – 20 = 0$

=> $y (y – 5) + 4 (y – 5) = 0$

=> $(y + 4) (y – 5) = 0$

=> $y = -4 , 5$

$\therefore$ No relation can be established.

Question 2: I. $6x^{2}+29x+35=0$
II. $3y^{2} +11y+10=0$

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

2) Answer (C)

Solution:

I.$6x^{2} + 29x + 35 = 0$

=> $6x^2 + 15x + 14x + 35 = 0$

=> $3x (2x + 5) + 7 (2x + 5) = 0$

=> $(2x + 5) (3x + 7) = 0$

=> $x = \frac{-7}{3} , \frac{-5}{2}$

II.$3y^{2} + 11y + 10 = 0$

=> $3y^2 + 6y + 5y + 10 = 0$

=> $3y (y + 2) + 5 (y + 2) = 0$

=> $(y + 2) (3y + 5) = 0$

=> $y = -2 , \frac{-5}{3}$

Hence $x < y$

Question 3:  I. $2x^{2}+18x+40=0$
II. $2y^{2} +15y+27=0$

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

3) Answer (E)

Solution:

I.$2x^{2} + 18x + 40 = 0$

=> $2x^2 + 8x + 10x + 40 = 0$

=> $2x (x + 4) + 10 (x + 4) = 0$

=> $(x + 4) (2x + 10) = 0$

=> $x = -4 , -5$

II.$2y^{2} + 15y + 27 = 0$

=> $2y^2 + 6y + 9y + 27 = 0$

=> $2y (y + 3) + 9 (y + 3) = 0$

=> $(y + 3) (2y + 9) = 0$

=> $y = -3 , \frac{-9}{2}$

$\therefore$ No relation can be established.

Question 4:  I.    $ 2x^{2}+15x+28=0 $
II.    $4y^{2} +18y+14=0 $

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

4) Answer (D)

Solution:

I.$2x^{2} + 15x + 28 = 0$

=> $2x^2 + 8x + 7x + 28 = 0$

=> $2x (x + 4) + 7 (x + 4) = 0$

=> $(x + 4) (2x + 7) = 0$

=> $x = -4 , \frac{-7}{2}$

II.$4y^{2} + 18y + 14 = 0$

=> $4y^2 + 4y + 14y + 14 = 0$

=> $4y (y + 1) + 14 (y +1) = 0$

=> $(y + 1) (4y + 14) = 0$

=> $y = -1 , \frac{-7}{2}$

$\therefore x \leq y$

Question 5: I.  $ 2x^{2}-19x+45 =0 $
II. $ 6y^{2}-48y+90=0  $

a) x > y

b) x ≥ y

c) x < y

d) x ≤ y

e) x = y or the relation cannot be established.

5) Answer (E)

Solution:

I.$2x^{2} – 19x + 45 = 0$

=> $2x^2 – 10x – 9x + 45 = 0$

=> $2x (x – 5) – 9 (x – 5) = 0$

=> $(x – 5) (2x – 9) = 0$

=> $x = 5 , \frac{9}{2}$

II.$6y^{2} – 48y + 90 = 0$

=> $y^2 – 8y + 15 = 0$

=> $y^2 – 3y – 5y + 15 = 0$

=> $y (y – 3) – 5 (y – 3) = 0$

=> $(y – 3) (y – 5) = 0$

=> $y = 3 , 5$

Hence no relation can be established.

Take Free MAH-CET mock tests here

Enrol to 5 MAH CET Latest Mocks For Just Rs. 299

Instructions

In the following questions two equations numbered I and II are given. You have to solve both equations and
Give answer If

a. x ˃ y
b. x ≥ y
c. x ˂ y
d. x ≤ y
e. x = y or the relationship cannot be established

Question 6: I. x = $\sqrt {3136} $
II.$ {y^2}$ = 3136

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

6) Answer (B)

Solution:

I. $x = \sqrt {3136} $

=> $x = 56$

II.$ {y^2} = 3136$

=> $y = \sqrt{3136} = \pm 56$

$\therefore x \geq y$

Question 7: I. ${x^2}$ + 8x + 15 = 0
II. ${y^2}$ + 11y + 30 = 0

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

7) Answer (B)

Solution:

I.$x^{2} + 8x + 15 = 0$

=> $x^2 + 5x + 3x + 15 = 0$

=> $x (x + 5) + 3 (x + 5) = 0$

=> $(x + 5) (x + 3) = 0$

=> $x = -5 , -3$

II.$y^{2} + 11y + 30 = 0$

=> $y^2 + 5y + 6y + 30 = 0$

=> $y (y + 5) + 6 (y + 5) = 0$

=> $(y + 6) (y + 5) = 0$

=> $y = -6 , -5$

$\therefore x \geq y$

Question 8: I.2x – 3y = – 3.5
II. 3x + 2y = – 6.5

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

8) Answer (C)

Solution:

I : $2x – 3y = -3.5$

II : $3x + 2y = -6.5$

Multiplying eqn(I) by 2 and eqn(II) by 3, and then adding both equations, we get :

=> $(4x + 9x) + (-6y + 6y) = (-7 -19.5)$

=> $13x = -26.5$

=> $x = \frac{-26.5}{13} \approx -2$

=> $y = \frac{3x + 6.5}{2} = 0.25$

Hence $x < y$

Question 9: I. ${x^2}$ + 28x + 192 = 0
II. ${y^2}$ + 16y + 48 = 0

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

9) Answer (D)

Solution:

I.$x^{2} + 28x + 192 = 0$

=> $x^2 + 16x + 12x + 192 = 0$

=> $x (x + 16) + 12 (x + 16) = 0$

=> $(x + 16) (x + 12) = 0$

=> $x = -16 , -12$

II.$y^{2} + 16y + 48 = 0$

=> $y^2 + 12y + 4y + 48 = 0$

=> $y (y + 12) + 4 (y + 12) = 0$

=> $(y + 12) (y + 4) = 0$

=> $y = -12 , -4$

$\therefore x \leq y$

Question 10: I. ${x^2}$ – 7x + 10 = 0
II. ${y^2}$ + 11y + 10 = 0

a) x ˃ y

b) x ≥ y

c) x ˂ y

d) x ≤ y

e) x = y or the relationship cannot be established

10) Answer (A)

Solution:

I.$x^{2} – 7x + 10 = 0$

=> $x^2 – 5x – 2x + 10 = 0$

=> $x (x – 5) – 2 (x – 5) = 0$

=> $(x – 5) (x – 2) = 0$

=> $x = 5 , 2$

II.$y^{2} + 11y + 10 = 0$

=> $y^2 + 10y + y + 10 = 0$

=> $y (y + 10) + 1 (y + 10) = 0$

=> $(y + 10) (y + 1) = 0$

=> $y = -10 , -1$

$\therefore x > y$

Instructions

In each of these questions two equations numbered I and II are given. You have to solve both the equations and –
Give answer a: if x < y
Give answer b: if x ≤ y
Give answer c: if x > y
Give answer d: if x ≥ y
Give answer e: if x = y or the relationship cannot be established.

Question 11: I.$x^{2}+12x+32=0$
II. $y^{2} +17y+72=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

11) Answer (D)

Solution:

I.$x^{2} + 12x + 32 = 0$

=> $x^2 + 8x + 4x + 32 = 0$

=> $x (x + 8) + 4 (x + 8) = 0$

=> $(x + 8) (x + 4) = 0$

=> $x = -8 , -4$

II.$y^{2} + 17y + 72 = 0$

=> $y^2 + 9y + 8y + 72 = 0$

=> $y (y + 9) + 8 (y + 9) = 0$

=> $(y + 9) (y + 8) = 0$

=> $y = -9 , -8$

$\therefore x \geq y$

Question 12: I. $x^{2}-22x+120=0$
II. $y^{2} -26y+168=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

12) Answer (B)

Solution:

I.$x^{2} – 22x + 120 = 0$

=> $x^2 – 10x – 12x + 120 = 0$

=> $x (x – 10) – 12 (x – 10) = 0$

=> $(x – 10) (x – 12) = 0$

=> $x = 10 , 12$

II.$y^{2} – 26y + 168 = 0$

=> $y^2 – 12y – 14y + 168 = 0$

=> $y (y – 12) – 14 (y – 12) = 0$

=> $(y – 12) (y – 14) = 0$

=> $y = 12 , 14$

$\therefore x \leq y$

Question 13: I. $x^{2}+7x+12=0$
II. $y^{2} +6y+8=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

13) Answer (E)

Solution:

I.$x^{2} + 7x + 12 = 0$

=> $x^2 + 3x + 4x + 12 = 0$

=> $x (x + 3) + 4 (x + 3) = 0$

=> $(x + 3) (x + 4) = 0$

=> $x = -3 , -4$

II.$y^{2} + 6y + 8 = 0$

=> $y^2 + 4y + 2y + 8 = 0$

=> $y (y + 4) + 2 (y + 4) = 0$

=> $(y + 4) (y + 2) = 0$

=> $y = -4 , -2$

Because $-2 > -4$ and $-3 > -4$

Therefore, no relation can be established.

Question 14: I.   $x^{2}-15x+56=0$
II. $y^{2} -23y+132=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

14) Answer (A)

Solution:

I.$x^{2} – 15x + 56 = 0$

=> $x^2 – 8x – 7x + 56 = 0$

=> $x (x – 8) – 7 (x – 8) = 0$

=> $(x – 8) (x – 7) = 0$

=> $x = 8 , 7$

II.$y^{2} – 23y + 132 = 0$

=> $y^2 – 11y – 12y + 132 = 0$

=> $y (y – 11) – 12 (y – 11) = 0$

=> $(y – 11) (y – 12) = 0$

=> $y = 11 , 12$

$\therefore x < y$

Question 15: I.  $x^{2}+13x+42=0$
II. $y^{2} +19y+90=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

15) Answer (C)

Solution:

I.$x^{2} + 13x + 42 = 0$

=> $x^2 + 7x + 6x + 42 = 0$

=> $x (x + 7) + 6 (x + 7) = 0$

=> $(x + 7) (x + 6) = 0$

=> $x = -7 , -6$

II.$y^{2} + 19y + 90 = 0$

=> $y^2 + 9y + 10y + 90 = 0$

=> $y (y + 9) + 10 (y + 9) = 0$

=> $(y + 9) (y + 10) = 0$

=> $y = -9 , -10$

$\therefore x > y$

Take MAH-CET Mock Tests

Enroll to CAT 2022 course

LEAVE A REPLY

Please enter your comment!
Please enter your name here