Number System Questions for SSC CHSL and MTS | Download PDF

0
274
Number System Questions For SSC CHSL & MTS 2022
Number System Questions For SSC CHSL & MTS 2022

Number System Questions for SSC CHSL and MTS 2022 – Download PDF

Here you can download SSC CHSL & MTS 2022 – important for SSC CHSL & MTS Number System Questions PDF by Cracku. Very Important SSC 2022 exams and These questions will help your SSC preparation. So kindly download the PDF for reference and do more practice.

Download Number System Questions for SSC CHSL and MTS PDF

Enroll to 15 SSC CHSL 2022 Mocks At Just Rs. 149

Question 1: What is the value of
$\frac{3}{4}  of  \left(\frac{1}{3} \div \frac{1}{2}\right) + \left(2 – \frac{2}{5}\right) \times \frac{3}{2} + \frac{2}{3}$?

a) $\frac{107}{30}$

b) $\frac{103}{25}$

c) $\frac{109}{17}$

d) $\frac{101}{6}$

Question 2: What is the value of $\frac{2 \div 3 \times (1 + 3) + 5 – 6}{2  of  3 \div 5 \times 4 + 3 – 2}$?

a) $\frac{36}{89}$

b) $\frac{31}{73}$

c) $\frac{25}{87}$

d) $\frac{27}{92}$

Question 3: What is the mode of given data?
4, 3, 7, 13, 16, 23, 3, 4, 7, 4, 3, 3, 9, 6, 9, 6

a) 9

b) 4

c) 3

d) 6

Question 4: What is the mode of the given data?
4, 3, 4, 3, 2, 2, 2, 5, 5, 3, 4, 6, 4, 3, 3

a) 3

b) 2

c) 5

d) 4

Question 5: What is the value of
$36 \div 8 \times 4 + 2 \div 4 – 1 + 5  of  3 \div (4 \times 2 – 3) – 3$?

a) $\frac{31}{2}$

b) $18$

c) $\frac{35}{2}$

d) $16$

Take a free SSC CHSL Tier-1 mock test

Download SSC CGL Tier-1 Previous Papers PDF

Question 6: What is the value of $\frac{39 \div 26 + 22 \div 11 \times 2 + 4 \times 3}{2  of  5 – 3(7 + 10 \div 2 – 3 \times 3)}$?

a) $\frac{39}{2}$

b) $\frac{49}{2}$

c) $\frac{61}{2}$

d) $\frac{35}{2}$

Question 7: What is the value of $(24 + 16 \times 5 – 8  of  4) \div 84 \times 48 \div 24 \times 6 + 4 + 3 ?$

a) $\frac{139}{3}$

b) $\frac{121}{7}$

c) $\frac{56}{3}$

d) $\frac{156}{5}$

Question 8: If $X : Y : Z = 1 : 2 : 3$ and, $X^2 + Y^2 + Z^2 = 224$, then what is the value of $X + Y + Z$?

a) 24

b) 48

c) 36

d) 32

Question 9: What is the value of $(3 \times 4  of  12 \div 2) \div 9 \times 4 + 4 \div 8 + 3 \times 2 ?$

a) $\frac{37}{2}$

b) $\frac{77}{2}$

c) $\frac{89}{3}$

d) $\frac{94}{3}$

Question 10: If $A = 8 \div 4 \times (3 – 1) + 6 \times 3 \div 2  of  3  and  B = 4 \div 8 \times 2 + 7 \times 3$, then what is the value of $A + B$?

a) 33

b) 29

c) 31

d) 35

Enroll to 15 SSC MTS 2022 Mocks At Just Rs. 149

Question 11: What is the least number of four digits which is exactly divisible by 2, 4, 6 and 8?

a) 1016

b) 1024

c) 1008

d) 1096

Question 12: What is the value of $\frac{3}{4} \div \left(\frac{1}{2} + \frac{1}{16}\right) + \frac{2}{3} of \frac{4}{9} \div \left(\frac{1}{3} – \frac{11}{81}\right) + \frac{1}{4} \times \frac{2}{3}$?

a) 3

b) 1

c) 2

d) 4

Question 13: What is the difference of mean and median of the given data : 4, 13, 8, 15, 9, 21, 18, 23, 35, 1?

a) 0.7

b) 1.7

c) 1.2

d) 2.1

Question 14: 60% of a number is 168, then what is the number?

a) 280

b) 320

c) 240

d) 200

Question 15: What is the value of: $5  of  5  of  5 \div 5 + 5 – 6 \div 3 \times 4 + 2 + (3 \div 6 \times 2)?$

a) 21

b) 25

c) 28

d) 19

Question 16: The mode of 2, 2, 3, 3, 5, 5, 5, 7, 8, 8, 9, 10 is:

a) 5

b) 2

c) 3

d) 6

Question 17: The mode of the following data is 36. What is the value of x ?

a) 11

b) 15

c) 13

d) 12

Question 18: When 6892, 7105 and 7531 are divided by the greatest number x, then the remainder in each case is y. What is the value of (x – y)?

a) 123

b) 137

c) 147

d) 113

Question 19: The sum of the perfect square between 120 and 300 is:

a) 1400

b) 1024

c) 1296

d) 1204

Question 20: The difference between the greatest and the least four digit numbers that begins with 3 and ends with 5 is:

a) 990

b) 900

c) 909

d) 999

Free SSC Preparation Videos

Download SSC CHSL  Previous Papers PDF

Answers & Solutions:

1) Answer (A)

$\frac{3}{4}  of  \left(\frac{1}{3} \div \frac{1}{2}\right) + \left(2 – \frac{2}{5}\right) \times \frac{3}{2} + \frac{2}{3}$

$\frac{3}{4}\times(\frac{1}{3}\times\frac{2}{1}) + (\frac{10 – 2}{5})\times\frac{3}{2} + \frac{2}{3}$

$\frac{3}{4}\times\frac{2}{3} + \frac{8}{5}\times\frac{3}{2} + \frac{2}{3}$

$\frac{6}{12} + \frac{24}{10} + \frac{2}{3}$

$\frac{30 + 144 + 40}{60}$

$\frac{214}{60}$ = $\frac{107}{30}$

Therefore option A is the answer.

2) Answer (C)

$\frac{2 \div 3 \times (1 + 3) + 5 – 6}{2  of  3 \div 5 \times 4 + 3 – 2}$

$\frac{\frac{2}{3}\times4 + 5 – 6}{2\times\frac{3}{5}\times 4 + 3 – 2}$

$\frac{\frac{8}{3} + 5 – 6}{\frac{24}{5} + 3 – 2}$

$\frac{\frac{8 + 15 – 18}{3}}{\frac{24 + 15 – 10}{5}}$

$\frac{8 + 15 – 18}{3}\times\frac{5}{24 + 15 – 10}$

$\frac{5}{3}\times\frac{5}{29}$

$\frac{25}{87}$

3) Answer (C)

Number 3 is repeated more number of times when compared to other numbers.Therefore 3 is the answer.

4) Answer (A)

The mode of a data set is the number that occurs most frequent in the set

To find the mode :

Step 1: arrange numbers in ascending order

2, 2 , 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6

Step 2 : count how many times each number occurs

2 three times

3 five times

4 four times

5 two times

6 one time

Step 3 : The number that occurs the most is the mode

3 is the mode

5) Answer (C)

$36 \div 8 \times 4 + 2 \div 4 – 1 + 5 of 3 \div (4 \times 2 – 3) – 3 $

$ = 36 \div 8 \times 4 + 2 \div 4 – 1 + 5 of 3 \div 5 – 3 $

$ =36 \div 8 \times 4 + 2 \div 4 – 1 + 15 \div 5 – 3 $

$ =\frac{9}{2} \times 4 + \frac{1}{2} – 1 + 3 – 3 $

$ =18 + \frac{1}{2} – 1 + 3 – 3 $

$ =18 + \frac{1}{2} + 3 – 4 $

$ = \frac{35}{2} $

6) Answer (D)

$\frac{39 \div 26 + 22 \div 11 \times 2 + 4 \times 3}{2  of  5 – 3(7 + 10 \div 2 – 3 \times 3)}$

$\frac{\frac{39}{26} + \frac{22}{11} \times 2 + 4 \times 3}{2 \times 5 – 3(7 + \frac{10}{2} – 3\times 3)}$

$\frac{\frac{3}{2} + 4 + 12}{10 – 3(7 + 5 -9)}$

$\frac{\frac{3 + 8 + 24}{2}}{10 – 3(3)}$

$\frac{\frac{35}{2}}{10 – 9}$

$\frac{35}{2}$

7) Answer (B)

$(24 + 16 \times 5 – 8  of  4) \div 84 \times 48 \div 24 \times 6 + 4 + 3 $

$\frac{(24 + 16\times5 – 8\times4)}{84}\times\frac{48}{24}\times6 + 4 + 3 $

$\frac{24 + 80 + 32}{7} + 4 + 3$

$\frac{72 + 28 + 21}{7}$

$\frac{121}{7}$

8) Answer (A)

$X : Y : Z = 1 : 2 : 3$

let X = a, Y= 2a , Z= 3a

now $X^2 + Y^2 + Z^2 = 224$ = $\left(a\right)^{2} +\left(2a\right)^{2} +\left(3a\right)^{2} = 224$

$a^2 + 4a^2 + 9a^2 = 224$

$ 14a^2 = 224$ , $ a^2 = \frac{224}{14}$ , $ a^2 = 16$

a=4

$X + Y + Z$ = $a+2a+3a= 6a $ = $6\times 4$ = 24

9) Answer (B)

using the BODMAS rule { priority brackets > of > division > multiplication > addition > subtraction}

solving the bracket first (1st priority brackets)

$(3 \times 4  of  12 \div 2)$ , now since ‘of’ is the priority hence it should be solved first

simplifying  it we get

$(3 \times 4\times12 \div 2)$ (here 4 of 12 is $4\times12$ ) =$(3 \times 4\times 6)$

substituting in original  question we get

$(3 \times 4\times 6) \div 9 \times 4 + 4 \div 8 + 3 \times 2 $

simpliying it further we get

$\frac{(3 \times 4\times 6)}{9} \times 4 +\frac{4}{8}+ 3 \times 2 $

= 32+$\frac{1}{2}$+ 6 = $\frac{77}{2}$

10) Answer (B)

Applying the BODMAS { priority brackets > of > division > multiplication > addition > subtraction }

To solve A , first solve the subtraction in the brackets i.e (3-1) = 2

simplifying A, we get

$A = 8 \div 4 \times 2 + 6 \times 3 \div 2  of  3 $ = $\frac{8}{4}\times 2 + \frac{6 \times 3}{6}$ ( here 2 of 3 is $2\times 3$ = 6)

A= 7

similarly applying BODMAS we solve for B

$B = 4 \div 8 \times 2 + 7 \times 3$ = $B = \frac{4}{8} \times 2 + 7 \times 3$ = 22

B = 22

A+B = 7+22 = 29

11) Answer (C)

For a number to be divisible 2,4,6,8 should be multiple of 2 and 3,as numbers 2,4,8 have common factor 2 and number 6 is a multiple of 2 and 3.

So, from the options given we get 1008 as a multiple of 2 and 3 both.

Hence option C is a correct choice

12) Answer (A)

$\frac{3}{4} \div \left(\frac{1}{2} + \frac{1}{16}\right) + \frac{2}{3} of \frac{4}{9} \div \left(\frac{1}{3} – \frac{11}{81}\right) + \frac{1}{4} \times \frac{2}{3}$

$ \Rightarrow$ $\frac{3}{4} \div \frac{9}{16} + \frac{8}{27} \div \frac{16}{81} + \frac{1}{6}$

$ \Rightarrow$ $\frac{3}{4}\times\frac{16}{9}+\frac{8}{27}\times\frac{81}{16}+\frac{1}{6}$

$ \Rightarrow$ $\frac{4}{3}+\frac{3}{2}+\frac{1}{6}$

$ \Rightarrow$ 3.

13) Answer (A)

Mean:

No. of samples (n) = 10

Mean = $\frac{\sum x}{n} = \frac{4+13+8+15+9+21+18+23+35+1}{10}= \frac{147}{10} = 14.7$

Median:

Arranging the data in ascending order, we get:

1, 4, 8, 9, 13, 15, 18, 21, 23, 35

n = 10 (even)

Therefore, median is the average of 5th and 6th term.

Median = $  \frac{13+15}{2}  = 14$

Mean – Median = 14.7 – 14 = 0.7

Therefore, Option A is correct.

14) Answer (A)

60% of the number is 168.

Let’s assume the number is ‘y’.

60% of y = 168

0.6y = 168

y = 280

15) Answer (B)

$5\times5\times\frac{5}{5}+5-\frac{6}{3}\times4+2+\frac{3}{6}\times2$

$25+5-8+2+1$

25

16) Answer (A)

Mode : The value that appears most often in a set of given data values.

Given Data : 2, 2, 3, 3, 5, 5, 5, 7, 8, 8, 9, 10

  • Most number repeated in above data is 5.

So, Mode of the given data is 5.

Hence, Option is correct.

17) Answer (D)

As per given data,

Class interval of 30-40 has highest frequency, thatswhy it is modal class

As we know,

M = $l+\left\{\frac{\left(f_1-f_0\right)}{2f_1-f_0-f_2}\right\}\times\ h$

where, h= size of the class interval,

l = lower limit of the modal class,

$f_{1=}$ frequency of the modal class,

$f_{_0=}$ frequency of the class preceding the modal class

$f_{_2=}$ frequency of the class succeeding the modal class

putting the values from the given data :

$36=30+\frac{\left(16-10\right)}{2\times\ 16-10-x}\times\ 10$

$36-30=\frac{6}{22-x}\times\ \ 10$

$22-x=10$

$x=12$

Hence, Option D is correct.

18) Answer (B)

We have to find HCF of given numbers : 6892, 7105, 7531

7105 – 6892 = 213

7531 – 7105 = 426

426 – 213 = 213

So, Either the difference or the factor of difference is the HCF of those given number.

Here , 213 is the HCF.

When 6892, 7105, 7531 is divided by 213 we get 76 as an remainder

So, x = 213 and y = 76

According to Question :

x – y = 213 – 76 = 137

Hence, Option B is correct.  

19) Answer (A)

Sum of the squares of n consecutive numbers =

The sum of the perfect square between 120 and 300 = $11^2+12^2+13^2+14^2+15^2+16^2+17^2$

$=\frac{17\left(17+1\right)\left(2\left(17+1\right)\right)}{6}-\frac{10\left(10+1\right)\left(2\left(10\right)+1\right)}{6}$

$=\frac{17\left(18\right)\left(35\right)}{6}-\frac{10\left(11\right)\left(21\right)}{6}$

$=51\times35-11\times35$

$=35\left(51-11\right)$

$=35\left(40\right)$

$=1400$

Hence, the correct answer is Option A

20) Answer (A)

The greatest four digit number that begins with 3 and ends with 5 = 3995

The least four digit number that begins with 3 and ends with 5 = 3005

$\therefore\ $The difference between the greatest and the least four digit numbers that begins with 3 and ends with 5 = 3995 – 3005 = 990

Download SSC Preparation App

Enroll to 15 SSC CHSL 2022 Mocks At Just Rs. 149

LEAVE A REPLY

Please enter your comment!
Please enter your name here