0
784

Mensuration Questions for SSC CPO PDF

Download SSC CPO  Mensuration Questions with answers PDF based on previous papers very useful for SSC CPO exams. Very important Mensuration Questions for SSC exams.

Question 1: Find the surface area $(in cm^2)$ of a sphere of diameter 14 cm.

a) 616

b) 4699

c) 8628

d) 6922

Question 2: Find the total surface area $(in cm^2)$ of a right circular cylinder of diameter 7 cm and height 6 cm.

a) 187

b) 209

c) 163

d) 149

Question 3: If the circumference of a circle is 88 cm, then what must be its area $(in cm^2)$ ?

a) 1232

b) 616

c) 704

d) 1408

Question 4: The perimeter of a square is 22 cm. Find its area $(in cm^2)$ ?

a) 60.5

b) 22.5

c) 45

d) 30.25

Question 5: Find the volume $(in cm^3)$ of a cube of side 4.5 cm.

a) 55.467

b) 14.445

c) 91.125

d) 26.465

Question 6: Find the total surface area $(in cm^2)$ of a right circular cylinder of diameter 28 cm and height 12 cm.

a) 2200

b) 2080

c) 1920

d) 2288

Question 7: The area of a square is $30.25 cm^2$. Find its perimeter (in cm).

a) 44

b) 23

c) 22

d) 46

Question 8: If the perimeter of a semicircle is 108 cm, then find its area (in cmz).

a) 1386

b) 512

c) 693

d) 1024

Question 9: The total surface area of a hemisphere is $462 cm^{2}$. Find its diameter (in cm).

a) 7

b) 28

c) 21

d) 14

Question 10: Find the volume (in cmc) of a cuboid of length, breadth and height of 10.5 cm, 8 cm and 9 cm respectively.

a) 307

b) 541

c) 355

d) 756

Radius of sphere, $r=7$ cm

Surface area of sphere = $4\pi r^2$

= $4\times\frac{22}{7}\times(7)^2$

= $88\times7=616$ $cm^2$

=> Ans – (A)

Height of cylinder, $h=6$ cm and radius, $r=\frac{7}{2}=3.5$ cm

Total surface area of cylinder = $2\pi r(r+h)$

= $2\times\frac{22}{7}\times\frac{7}{2}\times(3.5+6)$

= $22\times9.5=209$ $cm^2$

=> Ans – (B)

Let radius of circle = $r$ cm

=> Circumference = $2\pi r=88$

=> $2\times\frac{22}{7}\times r=88$

=> $r=88\times\frac{7}{44}$

=> $r=2\times7=14$ cm

$\therefore$ Area of circle = $\pi r^2$

= $\frac{22}{7}\times(14)^2$

= $22\times2\times14=616$ $cm^2$

=> Ans – (B)

Let side of square = $s$ cm

=> Perimeter = $4s=22$

=> $s=\frac{22}{4}=5.5$ cm

$\therefore$ Area = $(5.5)^2=30.25$ $cm^2$

=> Ans – (D)

Side of cube = $a=4.5$ cm

=> Volume of cube = $a^3$

= $(4.5)^3=91.125$ $cm^3$

=> Ans – (C)

Height of cylinder, $h=12$ cm and radius, $r=\frac{28}{2}=14$ cm

Total surface area of cylinder = $2\pi r(r+h)$

= $2\times\frac{22}{7}\times14\times(14+12)$

= $88\times26=2288$ $cm^2$

=> Ans – (D)

Let side of square = $s$ cm

=> Area = $s^2=30.25$

=> $s=\sqrt{30.25}=5.5$ cm

$\therefore$ Perimeter = $4\times5.5=22$ cm

=> Ans – (C)

Let radius of semi circle = $r$ cm

=> Perimeter of semi circle = $\pi r+2r=108$

=> $r(\frac{22}{7}+2)=108$

=> $r(\frac{22+14}{7})=108$

=> $r=108\times\frac{7}{36}=21$ cm

$\therefore$ Area of semi-circle = $\frac{1}{2} \pi r^2$

= $\frac{1}{2}\times\frac{22}{7}\times(21)^2$

= $11\times21\times3=693$ $cm^2$

=> Ans – (C)

Let the radius of hemisphere = $r$ cm

=> Total surface area = $3\pi r^2=462$

=> $3\times\frac{22}{7}\times r^2=462$

=> $r^2=462\times\frac{7}{66}=49$

=> $r=\sqrt{49}=7$

$\therefore$ Diameter = $2\times7=14$ cm

=> Ans – (D)

Dimensions of cuboid : $l=10.5$, $b=8$ and $h=9$ cm
=> Volume of cuboid = $lbh$
= $10.5\times8\times9=756$ $cm^3$