0
1480

# Mathematical Inequalities Questions for SBI Clerk PDF

Download SBI Clerk Mathematical Inequalities Questions & Answers PDF for SBI Clerk Prelims and Mains exam. Very Important SBI Clerk Mathematical Inequalities Questions with solutions.

## Instructions

For the two given equations I and II—-

Question 1: I. $6p^{2}+5p+1=0$
II. $20q^{2}+9q=-1$

a) Give answer (A) if p is greater than q.

b) Give answer (B) if p is smaller than q.

c) Give answer (C) if p is equal to q.

d) Give answer (D) if p is either equal to or greater than q.

e) Give answer (E) if p is either equal to or smaller than q.

Question 2: I. $3p^{2}+2p-1=0$ II. $2q^{2}+7q+6=0$

a) Give answer (A) if p is greater than q.

b) Give answer (B) if p is smaller than q.

c) Give answer (C) if p is equal to q.

d) Give answer (D) if p is either equal to or greater than q.

e) Give answer (E) if p is either equal to or smaller than q.

Question 3: I. $3p^2+15p=-18$ II. $q^2+7q+12=0$

a) Give answer (A) if p is greater than q.

b) Give answer (B) if p is smaller than q.

c) Give answer (C) if p is equal to q.

d) Give answer (D) if p is either equal to or greater than q.

e) Give answer (E) if p is either equal to or smaller than q.

Question 4: I. $p=\frac{\sqrt{4}}{\sqrt{9}}$ II. $9q^{2}-12q+4=0$

a) Give answer (A) if p is greater than q.

b) Give answer (B) if p is smaller than q.

c) Give answer (C) if p is equal to q.

d) Give answer (D) if p is either equal to or greater than q.

e) Give answer (E) if p is either equal to or smaller than q.

Question 5: I. $p^{2}+13p+42=0$ II. $q^{2}=36$

a) Give answer (A) if p is greater than q.

b) Give answer (B) if p is smaller than q.

c) Give answer (C) if p is equal to q.

d) Give answer (D) if p is either equal to or greater than q.

e) Give answer (E) if p is either equal to or smaller than q.

Instructions

In these questions, two equations numbered I and II are given. You have to solve both the equations and select the appropriate option.

Question 6: I. $2x^{2}+19x+45=0$
II. $2y^{2}+11y+12=0$

a) x = y

b) x> y

c) x < y

d) relationship between xand y cannot be determined

e) x + y

Question 7: I. $3x^{2}-13x+12=0$
II. $2y^{2}-15y+28=0$

a) x> y

b) x= y

c) x < y

d) relationship between x and y cannot be determined

e) x≤ y

Question 8: I. $x^{2}=16$
II. $2y^{2}-17y+36=0$

a) x > y

b) x > y

c) x < y

d) relationship between x and y cannot be determined

e) $x \leq y$

Question 9: I. $6x^{2}+19x+15=0$
II. $3y^{2}+11y+10=0$

a) x = y

b) x > y

c) x < y

d) $x \geq y$

e) $x \leq y$

Question 10: I. $2x^{2}-11x+15=0$
II. $2y^{2}-11y+14=0$

a) x > y

b) x> y

c) x < y

d) relationship between x and y cannot be determined

e) x ≤ y

Instructions

In the following questions two equations numbered I and
II are given. You have to solve both the equations and
a: if x > y
b: if x ≥ y
c: if x < y
d: if x ≤ y
e: if x = y or the relationship cannot be established.

Question 11: I. $x^{2}+x-12=0$
II. $y^{2}+2y-8=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 12: I. $4x^{2}-13x+9=0$
II. $3y^{2}-14y+16=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 13: I. $8x^{2}+18x+9=0$
II. $4y^{2}+19y+21=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 14: I. $3x^{2}+16x+21=0$
II. $6y^{2}+17y+12=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 15: I. $x^{2}=49$
II. $y^{2}-4y-21=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

$6p^2+5p+1 = 0$
$(2p+1)(3p+1) = 0$
$p = -\frac{1}{2}, -\frac{1}{3}$

$20q^2+9q+1 = 0$
$(4q+1)(5q+1) = 0$
$q = -\frac{1}{4}, -\frac{1}{5}$

$p < q$

$3p^2+2p-1 = 0$
$(3p-1)(p+1) = 0$
$p = -1, \frac{1}{3}$

$2q^2+7q+6 = 0$
$(2q+3)(q+2) = 0$
$q = -2, -\frac{3}{2}$

p > q

$3p^2+15p+18 = 0$
$p^2+5p+6 = 0$
$(p+2)(p+3) = 0$
$p = -3, -2$

$q^2+7q+12 = 0$
$(q+4)(q+3) = 0$
$q = -4, -3$

$p\geq q$

$p = \frac{\sqrt{4}}{\sqrt{9}}$
$p = \frac{2}{3}$

$9q^2-12q+4 = 0$
${(3q-2)}^2 = 0$
$q = \frac{2}{3}$

p = q

$p^2+13p+42 = 0$
$(p+6)(p+7) = 0$
$p = -6, -7$

$q^2 = 36$
$q = -6, 6$

$p\leq q$

$2x^2+19x+45 = 0$
$(2x+9)(x+5) = 0$
$x = -5, -\frac{9}{2}$

$2y^2+11y+12 = 0$
$(2y+3)(y+4) = 0$
$y = -4, -\frac{3}{2}$

x < y

$3x^2-13x+12 = 0$
$(3x-4)(x-3) = 0$
$x = \frac{4}{3}, 3$

$2y^2-15y+28 = 0$
$(2y-7)(y-4) = 0$
$y = \frac{7}{2}, 4$

x < y

$x^2 = 16$
$x = 4, -4$

$2y^2-17y+36 = 0$
$(2y-9)(y-4) = 0$
$y = \frac{9}{2}, 4$

$x \leq y$

$6x^2+19x+15 = 0$
$(3x+5)(2x+3) = 0$
$x = -\frac{5}{3}, -\frac{3}{2}$

$3y^2+11y+10 = 0$
$(3y+5)(y+2) = 0$
$y = -\frac{5}{3}, -2$

$x\geq y$

$2x^2-11x+15 = 0$
$(2x-5)(x-3) = 0$
$x = 3, \frac{5}{2}$

$2y^2-11y+14 = 0$
$(2y-7)(y-2) = 0$
$y = 2, \frac{7}{2}$

relationship between x and y cannot be established

$x^2+x-12 = 0$
$(x-3)(x+4) = 0$
$x = -4, 3$

$y^2+2y-8 = 0$
$(y-2)(y+4) = 0$
$y = -4, 2$

Hence, a relationship can not be established between $x$ and $y$

$4x^2-13x+9 = 0$
$(4x-9)(x-1) = 0$
$x = 1, \frac{9}{4}$

$3y^2-14y+16 = 0$
$(3y-8)(y-2) = 0$
$y = 2, \frac{8}{3}$

relationship between x and y cannot be established

$8x^2+18x+9 = 0$
$(4x+3)(2x+3) = 0$
$x = -\frac{3}{2}, -\frac{3}{4}$

$4y^2+19y+21 = 0$
$(4y+7)(y+3) = 0$
$y = -3, -\frac{7}{4}$

x > y

$3x^2+16x+21 = 0$
$(3x+7)(x+3) = 0$
$x = -3, -\frac{7}{3}$

$6y^2+17y+12 = 0$
$(3y+4)(2y+3) = 0$
$y = -\frac{4}{3}, -\frac{3}{2}$

x < y

$x^2 = 49$
$x = -7, 7$
$y^2-4y-21 = 0$
$(y-7)(y+3) = 0$
$y = -3, 7$