Logarithms Questions for IIFT PDF 

0
622
Logarithms Questions for IIFT PDF 

Logarithms Questions for IIFT PDF

Download important IIFT Logarithms Questions PDF based on previously asked questions in IIFT and other MBA exams. Practice Logarithms questions and answers for IIFT exam.

Download Logarithms Questions for IIFT PDF 

Get 50% Off on IIFT & Other MBA Test Series 

Download IIFT Previous Papers PDF

Practice IIFT Mock Tests

Question 1: If $log_3 2, log_3 (2^x – 5), log_3 (2^x – 7/2)$ are in arithmetic progression, then the value of x is equal to

a) 5

b) 4

c) 2

d) 3

Question 2: If $log_y x = (a*log_z y) = (b*log_x z) = ab$, then which of the following pairs of values for (a, b) is not possible?

a) (-2, 1/2)

b) (1,1)

c) (0.4, 2.5)

d) ($\pi$, 1/ $\pi$)

e) (2,2)

Question 3: If $f(x) = \log \frac{(1+x)}{(1-x)}$, then f(x) + f(y) is

a) $f(x+y)$

b) $f{\frac{(x+y)}{(1+xy)}}$

c) $(x+y)f{\frac{1}{(1+xy)}}$

d) $\frac{f(x)+f(y)}{(1+xy)}$

Question 4: If $\log_{2}{x}.\log_{\frac{x}{64}}{2}=\log_{\frac{x}{16}}{2}$. Then x is

a) 2

b) 4

c) 16

d) 12

Question 5: Find the value of x from the following equation:
$\log_{10}{3}+\log_{10}(4x+1)=\log_{10}(x+1)+1$

a) 2/7

b) 7/2

c) 9/2

d) None of the above

IIFT Free Mock Test

Enroll for CAT/MBA Courses

Question 6: If $log_{10} x – log_{10} \sqrt[3]{x} = 6log_{x}10$ then the value of x is

a) 10

b) 30

c) 100

d) 1000

Question 7: $(1+5)\log_{e}3+\frac{(1+5^{2})}{2!}(\log_{e}3)^{2}+\frac{(1+5^{3})}{3!}(\log_{e}3)^{3}+…$

a) 12

b) 244

c) 243

d) 245

Question 8: If $log(2^{a}\times3^{b}\times5^{c} )$is the arithmetic mean of $log ( 2^{2}\times3^{3}\times5)$, $log(2^{6}\times3\times5^{7} )$, and $log(2 \times3^{2}\times5^{4} )$, then a equals

Question 9: If $\log_{2}({5+\log_{3}{a}})=3$ and $\log_{5}({4a+12+\log_{2}{b}})=3$, then a + b is equal to

a) 59

b) 40

c) 32

d) 67

Question 10: $\frac{1}{log_{2}100}-\frac{1}{log_{4}100}+\frac{1}{log_{5}100}-\frac{1}{log_{10}100}+\frac{1}{log_{20}100}-\frac{1}{log_{25}100}+\frac{1}{log_{50}100}$=?

a) $\frac{1}{2}$

b) 10

c) 0

d) −4

Top 500+ Free Questions for IIFT

IIFT Previous year question  answer PDF

Answers & Solutions:

1) Answer (D)

$2 log (2^x – 5) = log 2 + log (2^x – 7/2)$
Let $2^x = t$
=> $(t-5)^2 = 2(t-7/2)$
=> $t^2 + 25 – 10t = 2t – 7$
=> $t^2 – 12t + 32 = 0$
=> t = 8, 4
Therefore, x = 2 or 3, but $2^x$ > 5, so x = 3

2) Answer (E)

$log_y x = ab$
$a*log_z y = ab$ => $log_z y = b$
$b*log_x z = ab$ => $log_x z = a$
$log_y x$ = $log_z y * log_x z$ => $log x/log y$ = $log y/log z * log z/log x$
=> $\frac{log x}{log y} = \frac{log y}{log x}$
=> $(log x)^2 = (log y)^2$
=> $log x = log y$ or $log x = -log y$
So, x = y or x = 1/y
So, ab = 1 or -1
Option 5) is not possible

3) Answer (B)

If $f(x) = \log \frac{(1+x)}{(1-x)}$ then $f(y) = \log \frac{(1+y)}{(1-y)}$

Also Log (A*B)= Log A + Log B

f(x)+f(y) = $ \log \frac{(1+x)(1+y)}{(1-x)(1-y)}$ solving we get $\log { \frac{1+ \frac{(x+y)}{(1+xy)}}{1- \frac{(x+y)}{(1+xy)}}}$

Hence option B.

4) Answer (B)

$\log_{2}{x}.\log_{\frac{x}{64}}{2}=\log_{\frac{x}{16}}{2}$

i.e. $\frac{log{x}}{log{2}} * \frac{log_{2}}{log{x}-log{64}} = \frac{log{2}}{log{x}-log{16}}$

i.e. $\frac{log{x} * (log{x}-log{16})}{log{x}-log{64}}$ = $\log{2}$

let t = log x

Therefore,  $\frac{t * (t-log{16})}{t-log{64}}$ = $\log{2}$

$t^2-4*log 2*t = t*log 2-6*(log 2)^2$

I.e. $t^2-5*log 2*t-6*(log 2)^2$ = 0

I.e. $t^2-3*log 2*t-2*log 2*t-6*(log 2)^2$ = 0

i.e. $t*(t-3*log 2)-2*log 2*(t-3*log 2)$ = 0

i.e $t=2*log 2$ or $t=3*log 2$

i.e $log x=log 4$ or $log x=log 8$

therefore $x=4$ or $8$

therefore our answer is option ‘B’

5) Answer (B)

$\log_{10}{3}+\log_{10}(4x+1)=\log_{10}(x+1)+1$ can be written as

$\log_{10}{3}+\log_{10}(4x+1)=\log_{10}(x+1)+\log_{10}{10}$

We know that $\log_{10}{a}+\log_{10}{b}=\log_{10}{ab}$

$\log_{10}{3*(4x+1)}=\log_{10}{(x+1)*10}$

$12x+3=10x+10$

$x=7/2$. Hence, option B is the correct answer.

Quant Formula For IIFT PDF

IIFT Free Mock Test

6) Answer (D)

$\log_{10} x – \log_{10} \sqrt[3]{x} = 6\log_{x}10$
Thus, $\dfrac{\log {x}}{\log {10}}$ – $\dfrac{1}{3}*\dfrac{\log {x}}{\log {10}}$ = $6*\dfrac{\log{10}}{\log{x}}$
=> $\dfrac{2}{3}*\dfrac{\log {x}}{\log {10}}$ = $6*\dfrac{\log{10}}{\log{x}}$
Thus, => $\dfrac{1}{9}*(\log{x})^2 = (\log{10})^2$
Thus, $ x = 1000$
Hence, option D is the correct answer.

7) Answer (B)

Splitting the above mentioned series into two series

A = $\log_{e}3+\frac{1}{2!}(\log_{e}3)^{2}+\frac{1}{3!}(\log_{e}3)^{3}+…$

B = $5\log_{e}3+\frac{5^{2}}{2!}(\log_{e}3)^{2}+\frac{5^{3}}{3!}(\log_{e}3)^{3}+…$

We know that $e^{x}$ =$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+…$

So  $e^{x}-1$ = $x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+…$

On solving two series A and B

A = $\log_{e}3+\frac{1}{2!}(\log_{e}3)^{2}+\frac{1}{3!}(\log_{e}3)^{3}+…$ =$e^{\log_{e}3}-1$ = $3-1$ =$2$

B = $5\log_{e}3+\frac{5^{2}}{2!}(\log_{e}3)^{2}+\frac{5^{3}}{3!}(\log_{e}3)^{3}+…$=$e^{\log_{e}3^{5}}-1$=$3^{5}-1$=$242$

A+B = $2 + 242$ = $244$

8) Answer: 3

$log(2^{a}\times3^{b}\times5^{c} )$ = $ \frac{log ( 2^{2}\times3^{3}\times5) + log(2^{6}\times3\times5^{7} ) + log(2 \times3^{2}\times5^{4} ) }{3} $

$log(2^{a}\times3^{b}\times5^{c} )$ = $ \frac{log ( 2^{2+6+1}\times3^{3+1+2}\times5^{1+7+4}) }{3} $

$log(2^{a}\times3^{b}\times5^{c} )$ = $ \frac{log ( 2^{9}\times3^{6}\times5^{12}) }{3} $

$3log(2^{a}\times3^{b}\times5^{c} )$ = $ log ( 2^{9}\times3^{6}\times5^{12}) $
Hence, 3a = 9 or a = 3

9) Answer (A)

$\log_{2}({5+\log_{3}{a}})=3$
=>$5 + \log_{3}{a}$ = 8
=>$ \log_{3}{a}$ = 3
or $a$ = 27

$\log_{5}({4a+12+\log_{2}{b}})=3$
=>$4a+12+\log_{2}{b}$ = 125
Putting $a$ = 27, we get
$\log_{2}{b}$ = 5
or, $b$ = 32

So, $a + b$ = 27 + 32 = 59
Hence, option A is the correct answer.

10) Answer (A)

We know that $\dfrac{1}{log_{a}{b}}$ = $\dfrac{log_{x}{a}}{log_{x}{b}}$

Therefore, we can say that $\dfrac{1}{log_{2}{100}}$ = $\dfrac{log_{10}{2}}{log_{10}{100}}$

$\Rightarrow$ $\frac{1}{log_{2}100}-\frac{1}{log_{4}100}+\frac{1}{log_{5}100}-\frac{1}{log_{10}100}+\frac{1}{log_{20}100}-\frac{1}{log_{25}100}+\frac{1}{log_{50}100}$

$\Rightarrow$ $\dfrac{log_{10}{2}}{log_{10}{100}}$-$\dfrac{log_{10}{4}}{log_{10}{100}}$+$\dfrac{log_{10}{5}}{log_{10}{100}}$-$\dfrac{log_{10}{10}}{log_{10}{100}}$+$\dfrac{log_{10}{20}}{log_{10}{100}}$-$\dfrac{log_{10}{25}}{log_{10}{100}}$+$\dfrac{log_{10}{50}}{log_{10}{100}}$

We know that $log_{10}{100}=2$

$\Rightarrow$ $\dfrac{1}{2}*[log_{10}{2}-log_{10}{4}+log_{10}{5}-log_{10}{10}+log_{10}{20}-log_{10}{25}+log_{10}{50}]$

$\Rightarrow$ $\dfrac{1}{2}*[log_{10}{\dfrac{2*5*20*50}{4*10*25}}]$

$\Rightarrow$ $\dfrac{1}{2}*[log_{10}10]$

$\Rightarrow$ $\dfrac{1}{2}$

IIFT Previous year question  answer PDF

IIFT Free Mock Test

We hope this Logarithms questions and answers PDF will be helpful to you.

LEAVE A REPLY

Please enter your comment!
Please enter your name here