Linear Equation Questions For SSC GD PDF Set – 2

0
672
Linear Equation Questions For SSC GD PDF
Linear Equation Questions For SSC GD PDF

Linear Equation Questions For SSC GD PDF Set – 2

SSC GD Constable Linear Equation Question paper with answers download PDF based on SSC GD exam previous papers. 40 Very important Linear Equation questions for GD Constable.

DOWNLOAD SSC GD LINEAR EQUATION QUESTIONS PDF

GET 20 SSC GD MOCK FOR JUST RS. 117

FREE SSC EXAM YOUTUBE VIDEOS

Download SSC GD Important Questions PDF

1500+ Must Solve Questions for SSC Exams (Question bank)

Question 1: Find the number of factors of 13x if (7-4x3)(32)=x6.

a) 12

b) 4

c) 8

d) 6

Question 2: Find the value of  30+30+

a) 5

b) 3

c) 6

d) 7

Question 3: 215x2 = 2750, find the value of x ?

a) 25

b) 253

c) 252

d) 20

Question 4: Sin A + Sin2 A = 1, then the value of cos2 A + cos4 A is

a) 2

b) 23

c) 112

d) 1

Question 5: If X =  53 + 2, then the value of  x36x2 + 12x – 13 is

a) -1

b) 1

c) 2

d) 0

Download SSC GD FREE PREVIOUS PAPERS

LATEST FREE SSC GD MOCK 2019

Question 6: If 2x +  2x = 3 then the value of  x3+1x3+ 2 is

a) -98

b) -258

c) 78

d) 11

Question 7: If a2+b2+c2= 2(a-b-c)-3, then the value of 4a – 3b + 5c is

a) 2

b) 3

c) 5

d) 6

Question 8: The value of 32(3+6)43(6+2)+6(2+3) is

a) 2

b) 0

c) 3

d) 6

Question 9: The value of 2432432434.. is

a) 243

b) 243

c) 24

d) 43

Question 10: The value of cosec2 18 1cot272 is

a) 13

b) 23

c) 12

d) 1

DOWNLOAD APP TO ACESS DIRECTLY ON MOBILE

Daily Free SSC Practice Set

Question 11: If x2- 3x + 1 = 0, then the value of  x5+1x5 is equal to

a) 87

b) 123

c) 135

d) 201

Question 12: The value of 0.65 x 0.65 + 0.35 x 0.35+0.70 x 0.65 is

a) 1.75

b) 1.00

c) 1.65

d) 1.55

Question 13: The value of (75.8)2(35.8)240 is

a) 121.6

b) 40

c) 160

d) 111.6

Question 14: If tan(θ)tan(5θ)=1, then what is the value of sin2θ ?

a) 0

b) 12

c) 12

d) 32

Question 15: What is the simplified value of  2sin3 θ sinθcosθ  2 cos3 θ?

a) tan θ

b) sin θ

c) cos θ

d) cot θ

SSC

SSC CGL Free Mock Test

Download SSC GD Constable Syllabus PDF

Question 16: If xxtan2151+tan215= sin 60 + cos 30 , then what is then what is the value of x?

a) 2

b) -1

c) -2

d) 1

Question 17: What is the simplified value of sec2θ+cosec2θ4?

a) cosec 2θ

b) sec 2θ

c) cosec θ sec θ

d) tan θ

Question 18: The side QR of ΔPQR is produced to S. If ∠PRS = 105° and ∠Q = (1/2)∠P, then what is the value of ∠P?

a) 45

b) 60

c) 70

d) 75

Question 19: In the given figure, O is the center of the circle, CAO = 35. What is the value (in degrees) of  AOB?

a) 90

b) 110

c) 160

d) 130

Question 20: In ΔABC, ∠A : ∠B : ∠C = 3 : 3 : 4. A line parallel to BC is drawn which touches AB and AC at P and Q respectively. What is the value of ∠AQP – ∠APQ?

a) 12

b) 18

c) 24

d) 36

Question 21: If x=51x, then what is the value of x5+1x5?

a) 625

b) 3125

c) 2525

d) 2500

Question 22: If x3y3=112 and xy=4, then what is the value of x2+y2?

a) 16

b) 20

c) 24

d) 28

Question 23: If 3x13x=9, then what is the value of x2+x281?

a) 7

b) 83/9

c) 11

d) 121/9

Question 24: If x4+1x4=198 and x>0, then what is the value of x21x2?

a) 14

b) 27

c) 102

d) 10

Question 25: If x+y=4, then what is the value of x3+y3+12xy?

a) 16

b) 32

c) 64

d) 256

Question 26: If N=(757+5), then what is the value of 1N ?

a) 635

b) 6+35

c) 7+35

d) 735

Question 27: If cosec θ + 3 sec θ = 5 cosec θ, then what is the value of cot θ?

a) 4/3

b) 3/4

c) 1/√3

d) √3

Question 28: What is the simplified value of  7sec2θ+31+cot2θ+4 sin2θ?

a) 3

b) 4

c) 5

d) 7

Question 29: If √5 tan θ = 5 sin θ, then what is the value of (sin2 θ – cos2θ)?

a) 3/5

b) 1/5

c) 4/5

d) 2/5

Question 30: If tan  θ =  23 , then what is the value of  15sin2θ3cos2θ5sin2θ+3cos2θ?

a) 3332

b) 1129

c) 3347

d) 1132

Question 31: In an isosceles triangle PQR, ∠P = 130. If I is the in-centre of the triangle, then what is the value (in degrees) of ∠QIR?

a) 130

b) 120

c) 155

d) 165

Question 32: In the given figure, EF = CE = CA, What is the value (in degrees) of EAC?

a) 58

b) 64

c) 72

d) 32

Question 33: In the given figure, O is the center of the circle,  PQR = 100 and STR = 105. What is the value (in degrees) of  OSP?

a) 95

b) 45

c) 75

d) 65

Question 34: What is the value of  (a2+b2)(ab)(ab)2a2bab2?

a) 0

b) 1

c) -1

d) 2

100+ Free GK Tests for SSC Exams

Download Free GK PDF

Question 35: If  x2 3x+1=0, then what is the value of  x4 +  1x4?

a) 11

b) 18

c) 47

d) 51

Question 36: If  3x1x+5y1y+7z1z= 0, then what is the value of  1x+1y+1z ?

a) -3

b) 0

c) 15

d) 21

Question 37: If x2210x+1=0, then what is the value of x1x?

a) 4

b) 6

c) 3

d) 5

Question 38: If x27x+1=0, then what is the value of x+1x?

a) 7

b) 3

c) 51

d) 47

Question 39: If the angles of a triangle are (2x – 8)o, (2x + 18)oand 6xo. What is the value of 3x (in degrees)?

a) 17

b) 34

c) 51

d) 60

Question 40: What is the value of 99913+99916+999112+999120+999130?

a) 99916

b) 99956

c) 499516

d) 499546

Answers & Solutions:

1) Answer (D)

solving the equation for x,
We get 212=2x+x6

212=13x6

x=6313

13x=63
Factorising 63 we get 63=32×7
Number of factors=(2+1)(1+1)
=6

2) Answer (C)

Let X=30+30+

Above equation can be written as

X=30+X

Squaring on both sides

X2=30+X

X2-X-30=0

X2-6X+5X-30=0

X(X-6)+5(X-6)=0

(X-6)(X+5)=0

X=-5,6

Taking positive value

X=6

3) Answer (C)

215x2=2750

==> 115x2=2750

==> x2=2750×511

==> x2=1250

==> x=1250=625×2

==> x=252

4) Answer (D)

Given sin A+sin2 A=1

==> sin A = 1-sin2 A

==> sin A = cos2 A (cos2A+sin2A=1)

cos2 A=sin A ==> cos4A=sin2A

cos2A+cos4A=1(sinA+sin2A=1)

5) Answer (D)

Given x=\sqrt[3]{5}+2

 x36x2 + 12x – 13

= (53+2)36(53+2)2+12(53+2)13

= (5+8+6×523+12×513)6[513+4+4×513]+12(513+2)13

= 13+6×523+12×5136×5232424×513+12×513+2413

= 0

SSC GD FREE STUDY MATERIAL

6) Answer (C)

Given 2x+1x= 3

2(x+1x)= 3

x+1x=32

Cubing on both sides

(x+1x)3=278

x3+1x3+3×x× 1x(x+1x) =278

x3+1x3+3(32)=278

x3+1x3=27892=98

x3+1x3+2=98+2=78

7) Answer (A)

 a2+b2+c2= 2(a-b-c)-3
We can write the above equation as

a22a+1+b2+2b+1+c2+2c+1=0
(a1)2+(b+1)2+(c+1)2=0

(a1)2=0a=1
(b+1)2=0 b=-1
(c+1)2=0 c=-1

4a-3b+5c= 4(1)-3(-1)+5(-1)=4+3-5=2

8) Answer (B)

32(3+6)43(6+2)+6(2+3)

= 66+18+62+63(122+24+123+126)+63+6+66+62(3+6)(6+2)(2+3)

= 66+18+62+6312224123126+63+6+66+62(3+6)(6+2)(2+3)

=0

9) Answer (A)

To find : y=2432432434..

Let 243=x

=> y=(x)×(x)×(x4)×.

=> y2=(x)[1+12+14++]

Now, sum of infinite G.P. = a(1r), where first term = a=1 and common ratio = r=12

=> y2=(x)1112

=> y2=(x)2

=> y=x

2432432434..=243

=> Ans – (A)

10) Answer (D)

cosec2 18 1cot272 

= cosec218tan272 (1cot2=tan2)

= cosec218tan2(9072)
= cosec218sec218 (sec2=tan2(90))
cosec218sec218=1(cosec2sec2=1)

11) Answer (B)

x23x+1=0

Taking ‘x’ common

x(x-3+1x)=0

x+1x=3(1)

Squaring on both sides

x2+1x2+2×x×1x=9

x2+1x2=7(2)

Cubing equation(1) on both sides

x3+1x3+3×x×1x(x+1x)=27

x3+1x3+3×1×3=27(x+1x=3)

x3+1x3=27-9=18(3)

Squaring equation(2) on both sides

x4+1x4+2×x2×1x2=49

x4+1x4=47(4)

Multiplying equation(1) and equation(4)

(x4+1x4)(x+1x)=47×3

x5+1x5+x3+1x3=47×3=141

x5+1x5+18=141(x3+1x3)

x5+1x5=123

12) Answer (B)

Expression : (0.65×0.65)+(0.35×0.35)+(0.70×0.65)

= (0.65)2+(0.35)2+2(0.35)(0.65)

Comparing with : (x)2+(y)2+2(x)(y)=(x+y)2

= (0.65+0.35)2=(1)2=1

=> Ans – (B)

13) Answer (D)

75.8235.8240=(75.8+35.8)(75.835.8)40

=111.6×4040=111.6

14) Answer (B)

Given : tan(θ)tan(5θ)=1

Using, tan(A+B)=tanA+tanB1tanAtanB

tan(θ+5θ)=tan(θ)+tan(5θ)1tan(θ)tan(5θ)

=> tan(6θ)=tan(θ)+tan(5θ)11

=> tan(6θ)=

=> tan(6θ)=tan(90)

=> 6θ=90

=> θ=906=15

sin(2θ)=sin(2×15)

= sin(30)=12

=> Ans – (B)

15) Answer (A)

Expression :  2sin3 θ sinθcosθ  2 cos3 θ

=  sin θ(2sin2 θ 1)cos θ(2 2 cos2 θ)

= sin θ(cos2 θ)cos θ(cos2 θ)

= sin θcos θ=tan θ

=> Ans – (A)

16) Answer (A)

tan15=313+1

Expression =  xxtan2151+tan215= sin 60 + cos 30 

=>  x(1tan215)1+tan215=32+32

=> x×1(313+1)21+(313+1)2=3

=> x×(3+1)2(31)2(3+1)2+(31)2=3

=> x×(3+1+23)(3+123)(3+1+23)+(3+123)=3

=> x×438=3

=> x=84=2

=> Ans – (A)

17) Answer (A)

Expression =  sec2θ+cosec2θ4

=  (1cos2 θ)+(1sin2 θ)4

=  (sin2 θ+cos2 θ)sin2 θ.cos2 θ4

= 14sin2 θcos2 θ

= (12sin θcos θ)2

= 1sin2θ=cosec2θ

=> Ans – (A)

18) Answer (C)

Let Q=x, => P=2x

Using exterior angle property in PQR,

=> P + Q = PRS

=> 2x+x=105

=> x=1053=35

P=2×35=70

=> Ans – (C)

19) Answer (C)

20) Answer (B)

Given : ∠A : ∠B : ∠C = 3 : 3 : 4 and PQ is parallel to BC

To find : ∠AQP – ∠APQ = ?

Solution : Let A=3x, B=3x and C=4x

Thus, in ABC,

=> A+B+C=180

=> 3x+3x+4x=180

=> x=18010=18

PQ BC, => APQ = B and AQP = C (Corresponding angles)

AQP – APQ = 4x3x=x=18

=> Ans – (B)

21) Answer (C)

Given : x=51x

=> x+1x=5=k

Now, x5+1x5=[(x3+1x3)×(x2+1x2)](x+1x)

= [(x+1x)33(x+1x)×(x+1x)22(x)(1x)](x+1x)

= [(k33k)×(k22)](k)

= [(12515)×(252)](5)

= (110×23)5

= 25305=2525

=> Ans – (C)

SSC GD Important Questions & Answers PDF

22) Answer (C)

Given : x3y3=112 ————–(i)

Also, xy=4 ————-(ii)

Cubing both sides, we get :

=> (xy)3=(4)3

=> (x3y3)3(x)(y)(xy)=64

Substituting values from equations (i) and (ii),

=> 1123xy(4)=64

=> 12xy=11264=48

=> xy=4812=4 ———–(iii)

Now, squaring equation (ii), we get :

=> x2+y22xy=16

=> x2+y2=16+8=24

=> Ans – (C)

23) Answer (B)

Given : 3x13x=9

Dividing both sides by 3, => x19x=3

Squaring both sides, we get :

=> (x19x)2=(3)2

=> x2+181x22(x)(19x)=9

=> (x2+181x2)29=9

=> (x2+181x2)=9+29

=> (x2+181x2)=839

=> Ans – (B)

24) Answer (A)

Given :  x4+1x4 =198

=> (x21x2)2+2(x2)(1x2)=198

=> (x21x2)2=1982=196

=> x21x2=196=14

=> Ans – (A)

25) Answer (C)

Given : x+y=4 ———–(i)

Cubing both sides, we get :

=> (x+y)3=(4)3

=> x3+y3+3xy(x+y)=64

=> x3+y3+3xy(4)=64

=> x3+y3+12xy=64

=> Ans – (C)

26) Answer (B)

Given : N=757+5

=> 1N=7+575

Rationalizing the denominator, we get :

= 7+575×7+57+5

= (7+5)2(75)(7+5)

= 7+5+2(7)(5)75

= 12+2352=6+35

=> Ans – (B)

27) Answer (B)

Given : cosecθ+3secθ=5cosecθ

=> 3secθ=5cosecθcosecθ

=> 3secθ=4cosecθ

=> 3cosθ=4sinθ

=> cosθsinθ=34

=> cotθ=34

=> Ans – (B)

28) Answer (D)

Expression :  7sec2θ+31+cot2θ+4 sin2θ

= 7cos2 θ+3cosec2 θ+4sin2 θ

= 7cos2 θ+3sin2 θ+4sin2 θ

= 7cos2 θ+7sin2 θ

= 7(cos2 θ+sin2 θ)

= 7×1=7

=> Ans – (D)

29) Answer (A)

Given : 5tan θ=5sin θ

=> sin θcos θ=5sin θ

=> cos θ=15

=> cos2 θ=15 —————(i)

Now, sin2 θ=1cos2 θ

=> sin2 θ=115=45 ————–(ii)

Subtracting equation (i) from (ii), we get :

(sin2 θcos2 θ)=4515=35

=> Ans – (A)

30) Answer (C)

Given : tan θ=23

=> sin θcos θ=23

Let sin θ=2 and cos θ=3

To find :  15sin2θ3cos2θ5sin2θ+3cos2θ

= 15(2)23(3)25(2)2+3(3)2

= 602720+27

= 3347

=> Ans – (C)

31) Answer (C)

Given : I is the incentre of PQR and BAC = 130°

To find : QIR = θ = ?

Incentre of a triangle = 90+P2

=> θ=90+1302

=> θ=90+65

=> θ=155

=> Ans – (C)

32) Answer (B)

Given : EF = CE = CA

=> CAE = CEA = x and ECF = EFC = y

To find : EAC = x=?

Solution : Using exterior angle property, => CAE + CFE = ACD

=> x+y=96 —————–(i)

Also, CEF = (1802y)=180x

=> x=2y ————(ii)

Substituting it in equation (i), => 2y+y=3y=96

=> y=963=32

x=2×32=64

=> Ans – (B)

33) Answer (D)

Given :  PQR = 100 and STR = 105

To find :  OSP = ?

Solution : Quadrilateral PQRS is cyclic quadrilateral, hence opposite angles are supplementary.

=> PQR + PSR = 180

=> PSR = 180100=80 ————–(i)

Also, angle at the centre is double the angle at any point on the circumference of the circle in the same segment.

=> reflex ( SOR) = 2 × STR

=> reflex ( SOR) = 2×105=210

Thus, SOR = 360210=150

Now, in SOR, OS = OR = radius

=> OSR = ORS = 15 ———-(ii)

Subtracting equation (ii) from (i), we get :

OSP = 8015=65

=> Ans – (D)

34) Answer (D)

Expression :  (a2+b2)(ab)(ab)2a2bab2

=  (ab)[(a2+b2)(ab)](ab)(ab)

= (a2+b2)(ab)ab

= (ab)2+2ab(ab)ab

35) Answer (C)

Given : x23x+1=0

Dividing both sides by x

=> x+1x=3

Squaring both sides, we get :

=> x2+1x2+2(x)(1x)=9

=> x2+1x2=92=7

Again squaring both sides,

=> x4+1x4+2(x2)(1x2)=49

=> x4+1x4=492=47

=> Ans – (C)

36) Answer (C)

Given :  3x1x+5y1y+7z1z=0

=> (31x)+(51y)+(71z)=0

=> 1x+1y+1z=3+5+7

=> 1x+1y+1z=15

=> Ans – (C)

37) Answer (B)

Given : x2210x+1=0

Dividing both sides by x

=> x+1x=210

Squaring both sides, we get :

=> x2+1x2+2(x)(1x)=40

=> x2+1x2=402=38

=> (x1x)2+2(x)(1x)=38

=> (x1x)2=382=36

=> x1x=36=6

=> Ans – (B)

38) Answer (A)

Given : x27x+1=0

Dividing both sides by x

=> x7+1x=0

=> x+1x=7

=> Ans – (A)

39) Answer (C)

Sum of angles of a triangle = 180

=> (2x8)+(2x+18)+(6x)=180

=> 10x+10=180

=> 10x=18010=170

=> x=17010=17

3x=3×17=51

=> Ans – (C)

40) Answer (D)

Expression : 99913+99916+999112+999120+999130

= (999+999+999+999+999)+(13+16+112+120+130)

= (4995)+(20+10+5+3+260)

= 4995+4060

= 499546

=> Ans – (D)

Download SSC GD Previous Papers PDF

DOWNLOAD APP FOR SSC FREE MOCKS

We hope this Linear Equation questions for SSC GD will be highly useful for your preparation.

LEAVE A REPLY

Please enter your comment!
Please enter your name here