Fraction Questions for SSC-CGL
Download SSC CGL Questions on Fraction PDF based on previous papers very useful for SSC CGL exams. Fraction Questions for SSC exams.
Download Fraction Questions for SSC CGL
Get 200 SSC mocks for just Rs. 249. Enroll here
Question 1: If $2x – \frac{1}{2x} = 6$, then the value of $x^2 + \frac{1}{16x^2}$
a) $\frac{19}{2}$
b) $\frac{17}{2}$
c) $\frac{18}{3}$
d) $\frac{15}{2}$
Question 2: If x,y are positive acute angles, x + y < 90o and sin(2x -20o) = cos(2y + 20o), then the values of sec(x + y) is
a) $\sqrt{2}$
b) $\frac{1}{\sqrt{2}}$
c) $1$
d) $0$
Question 3: If $x^2=y + z, y^2=z + x, z^2=x+y$, then the value $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$
a) 1
b) 2
c) 0
d) -1
Question 4: The sum of a non-zero number and thrice its reciprocal is 13/2. Find the number.
a) 6
b) 7
c) 8
d) 9
Question 5: The reciprocal of the sum of the reciprocals of 8/7 and 5/6 is:
a) 83/40
b) 42/83
c) 83/42
d) 40/83
Take a free mock test for SSC CGL
Download SSC CGL Previous Papers PDF
More SSC CGL Important Questions and Answers PDF
Question 6: If $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$ and x + y + z = 9, then what is the value of $x^3 + y^3 + z^3 – 3xyz$ ?
a) 81
b) 361
c) 729
d) 6561
Question 7: If A : B = 2 : 5, B : C = 4 : 3 and C : D = 2 : 1, then what is value of A : C : D?
a) 6 : 5 : 2
b) 7 : 20 : 10
c) 8 : 30 : 15
d) 16 : 30 : 15
Question 8: If $\frac{x}{y}=\frac{4}{9}$, then what is the value of $\frac{(7x^2-19xy+11y^2)}{y^2}$ ?
a) $\frac{59}{81}$
b) $\frac{100}{27}$
c) $\frac{319}{81}$
d) $\frac{913}{81}$
Question 9: If 27x + 27[x-(1/3)] = 99, then what is the value of x?
a) 2
b) 3
c) 4
d) 5
Question 10: If $a^{3} + b^{3}$ = 19 and a + b = 1, then what is the value of ab?
a) 5
b) -6
c) 7
d) -9
SSC CGL Previous Papers Download PDF
Answers & Solutions:
1) Answer (A)
$2x – \frac{1}{2x} = 6$
or $x – \frac{1}{4x} = 3$
squaring on both sides:
$x^2 + \frac{1}{16x^2} – \frac{1}{2}$ = 9
or $x^2 + \frac{1}{16x^2}$ = 19/2
2) Answer (A)
Given sin(2x-20) = cos(2y+20)
as x and y are positive acute angles
hence cos(90-2x+20) = cos(2y+20)
or 90-2x+20 = 2y+20
or x+y = 45
or sec(x+y) = $\sqrt2$
3) Answer (A)
$x^2 = y+z$
$y^2 = z+x$
on substracting above two eq. we will get
$x^2 – y^2 = y – x$
So either $x=y$
or $x+y= -1$ (it is not possible as $z^2$ can not be negative)
So $x=y=z=2$
So given eq. will reduce to a value 1
4) Answer (A)
Let the number be $x$
According to ques, => $x + \frac{3}{x} = \frac{13}{2}$
=> $\frac{x^2 + 3}{x} = \frac{13}{2}$
=> $2x^2 + 6 = 13x$
=> $2x^2 – 13x + 6 = 0$
=> $2x^2 – x – 12x + 6 = 0$
=> $x(2x – 1) – 6(2x – 1) = 0$
=> $(2x – 1)(x – 6) = 0$
=> $x = 6 , \frac{1}{2}$
=> Ans – (A)
5) Answer (D)
Sum of the reciprocals of 8/7 and 5/6
= $\frac{7}{8} + \frac{6}{5}$
= $\frac{7(5)+6(8)}{40} = \frac{35+48}{40}$
= $\frac{83}{40}$
=> Reciprocal of 83/40 = $\frac{40}{83}$
=> Ans – (D)
18000+ Questions – Free SSC Study Material
6) Answer (C)
Given : $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
=> $\frac{yz+zx+xy}{xyz}=0$
=> $xy+yz+zx=0$ ———–(i)
Also, $x+y+z=9$
Squaring both sides,
=> $(x+y+z)^2=(9)^2$
=> $x^2+y^2+z^2+2(xy+yz+zx)=81$
=> $x^2+y^2+z^2+2(0)=81$
=> $x^2+y^2+z^2=81$
To find : $x^3 + y^3 + z^3 – 3xyz$
= $(x+y+z)(x^2+y^2+z^2-xy-yz-zx)$
= $(9)(81-0)=729$
=> Ans – (C)
7) Answer (D)
Given : $\frac{A}{B}=\frac{2}{5}$ ———–(i)
$\frac{B}{C}=\frac{4}{3}$ ———–(ii)
and $\frac{C}{D}=\frac{2}{1}$ ———–(iii)
Multiplying equation (ii) by 10 and (iii) by 15 to make ‘C’ equal in both
=> $\frac{B}{C}=\frac{40}{30}$ and $\frac{C}{D}=\frac{30}{15}$
Now, multiplying equation (i) by 8 to make ‘B’ equal in both
=> $\frac{A}{B}=\frac{16}{40}$
Thus, we get = $A:B:C:D=16:40:30:15$
$\therefore$ A : C : D = 16 : 30 : 15
=> Ans – (D)
8) Answer (C)
Given : $\frac{x}{y}=\frac{4}{9}$
Let $x=4$ and $y=9$
To find : $\frac{(7x^2-19xy+11y^2)}{y^2}$
= $\frac{7(4)^2-19(4)(9)+11(9)^2}{(9)^2}$
= $\frac{112-684+891}{81}$
= $\frac{319}{81}$
=> Ans – (C)
9) Answer (A)
Expression : 27x + 27[x-(1/3)] = 99
=> $27x+27(\frac{3x-1}{3})=99$
=> $27x+9(3x-1)=99$
=> $27x+27x-9=99$
=> $54x=99+9=108$
=> $x=\frac{108}{54}=2$
=> Ans – (A)
10) Answer (B)
Given : $a^{3} + b^{3}$ = 19 ———–(i)
Also, $a+b=1$ ———–(ii)
Cubing both sides, we get :
=> $(a+b)^3=(1)^3$
=> $a^3+b^3+3ab(a+b)=1$
Substituting values from equation (i) and (ii)
=> $19+3ab(1)=1$
=> $3ab=1-19=-18$
=> $ab=\frac{-18}{3}=-6$
=> Ans – (B)
Get 200 SSC mocks for just Rs. 249. Enroll here
We hope this Fraction questions for SSC CGL Exam will be highly useful for your preparation.