Algebra Questions for SSC CHSL and MTS | Download PDF

0
483
Algebra Questions for SSC CHSL & MTS 2022
Algebra Questions for SSC CHSL & MTS 2022

Algebra Questions for SSC CHSL and MTS PDF

Here you can download SSC CHSL & MTS 2022 – important SSC CHSL & MTS Algebra Questions PDF by Cracku. Very Important SSC CHSL & MTS 2022 and These questions will help your SSC CHSL & MTS preparation. So kindly download the PDF for reference and do more practice.

Download Algebra Questions for SSC CHSL and MTS

Enroll to 15 SSC CHSL 2022 Mocks At Just Rs. 149

Question 1: If $a^{2}+b^{2}-c^{2}=0$, then the value of $\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$ is:

a) 3

b) 1

c) 0

d) 2

Question 2: If $a+\frac{1}{a}=5$ then $a^{3} + \frac{1}{a^{3}}$ is:

a) 110

b) 10

c) 80

d) 140

Question 3: The coefficient of x in $(x – 3y)^{3}$ is :

a) $3 y^{2}$

b) $27 y^{2}$

c) $-27 y^{2}$

d) $-3 y^{2}$

Question 4: Expand $\left(\frac{x}{3} + \frac{y}{5}\right)^3$

a) $\frac{x^3}{27} + \frac{x^2y}{25} + \frac{xy^2}{25} + \frac{y^3}{125}$

b) $\frac{x^3}{25} + \frac{x^2y}{15} + \frac{xy^2}{25} + \frac{y^3}{125}$

c) $\frac{x^3}{27} + \frac{xy}{15} + \frac{xy^2}{25} + \frac{y^3}{125}$

d) $\frac{x^3}{27} + \frac{x^2y}{15} + \frac{xy^2}{25} + \frac{y^3}{125}$

Question 5: If $a^2 + b^2 + c^2 = 300$ and $ab + bc + ca = 50$, then what is the value of $a + b + c$ ? (Given that a, b and c are all positive.)

a) 22

b) 20

c) 25

d) 15

Take a free SSC CHSL Tier-1 mock test

Download SSC CGL Tier-1 Previous Papers PDF

Question 6: If x + y + z = 10 and xy + yz + zx = 15, then find the value of $x^3 + y^3 + z^3 — 3xyz$.

a) 660

b) 525

c) 550

d) 575

Question 7: If $x^{2} – 4x+4=0 $, then the value of 16$(x^{4} – \frac{1}{x^{4}})$ is

a) 127

b) 255

c) $\frac{127}{16}$

d) $\frac{255}{16}$

Question 8: If $a^{3}+\frac{1}{a^{3}} = 52$ then the value of $2\left(a + \frac{1}{a}\right)$ is :

a) 8

b) 2

c) 6

d) 4

Question 9: If $b + c = ax, c + a = by, a + b = cz$, then the value $\frac{1}{9}\left[\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right]$ is:

a) $\frac{1}{9}$

b) 1

c) 0

d) $\frac{1}{3}$

Question 10: Find the product of $(a + b + 2c)(a^{2} + b^{2} + 4c^{2} – ab – 2bc – 2ca)$

a) $a^{3} + b^{3} + 8c^{3} – 2abc$

b) $a^{3} + b^{3} + 8c^{3} – abc$

c) $a^{3} + b^{3} + 6c^{3} – 6abc$

d) $a^{3} + b^{3} + 8c^{3} – 6abc$

Enroll to 15 SSC MTS 2022 Mocks At Just Rs. 149

Question 11: $25a^{2}-9$ is factored as

a) $(5a + 3)(5a – 3)$

b) $(5a + 1)(5a – 9)$

c) $(5a – 3)^{2}$

d) $(25a + 1)(a -9)$

Question 12: If $a^{4} + \frac{1}{a^{4}} = 50$, then find the value of $a^{3} + \frac{1}{a^{3}}$

a) $\sqrt{2(1+\sqrt{3})}+(-1+2\sqrt{13})$

b) $\sqrt{2(1+\sqrt{3})}(3-2\sqrt{13})$

c) $\sqrt{2(\sqrt{13}+1)}(3+2\sqrt{13})$

d) $\sqrt{2(1-\sqrt{3})}(-1+2\sqrt{13})$

Question 13: $(a + b – c + d)^2 – (a – b + c – d)^2 = ?$

a) $4a(b + d – c)$

b) $2a(a + b – c)$

c) $2a(b + c – d)$

d) $4a(b – d + c)$

Question 14: The value of $27a^3 – 2\sqrt{2}b^3$ is equal to:

a) $(3a – \sqrt{2}b)(9a^2 – 2b^2 + 6\sqrt{2}ab)$

b) $(3a – \sqrt{2}b)(9a^2 + 2b^2 + 6\sqrt{2}ab)$

c) $(3a – \sqrt{2}b)(9a^2 + 2b^2 + 3\sqrt{2}ab)$

d) $(3a – \sqrt{2}b)(9a^2 – 2b^2 – 3\sqrt{2}ab)$

Question 15: If $x+3y+2=0$ then value of $x^{3}+27y^{3}+8-18xy$ is:

a) -2

b) 2

c) 1

d) 0

Question 16: If $p+q=7$ and $pq=5$, then the value of $p^{3}+q^{3}$ is:

a) 34

b) 238

c) 448

d) 64

Question 17: If $30x^2 – 15x + 1 = 0$, then what is the value of $25x^2 + (36x^2)^{-1}$?

a) $\frac{9}{2}$

b) $6\frac{1}{4}$

c) $\frac{65}{12}$

d) $\frac{55}{12}$

Question 18: If a + b + c = 7 and ab + bc + ca = -6, then the value of $a^3 + b^3 + c^3 – 3abc$ is:

a) 469

b) 472

c) 463

d) 479

Question 19: The given table represents the revenue (in ₹ crores) of a company from the sale of four products A, B, C and D in 6 years. Study the table carefully and answer the question that follows. By what percentage is the total revenue of the company from the sale of products A, B and D in 2012 and 2013 more than the total revenue from the sale of product B in 2013 to 2016?(Correct to one decimal place)

a) 44.5

b) 31.2

c) 43.6

d) 45.4

Question 20: If $P = \frac{x^4 – 8x}{x^3 – x^2 – 2x}, Q = \frac{x^2 + 2x + 1}{x^2 – 4x – 5}$ and $R = \frac{2x^2 + 4x + 8}{x – 5}$, then $(P \times Q) \div R$ is equal to:

a) $\frac{1}{2}$

b) 1

c) 2

d) 4

Free SSC Preparation Videos

Download SSC CHSL  Previous Papers PDF

Answers & Solutions:

1) Answer (D)

If a + b + c  = 0 then $a^3 + b^3 + c^3 = 3abc$ so,

$a^{6}+b^{6}-c^{6} = 3a^2b^2c^2$

$\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$

= $\frac{2(3a^{2}b^{2}c^{2})}{3a^{2}b^{2}c^{2}}$ = 2

2) Answer (A)

$a^{3} + \frac{1}{a^{3}}$

= $($a+\frac{1}{a})^3 – 3(a+\frac{1}{a})$

($\because (a + b)^3 = a^3 + b^3 + 3ab(a + b))$

= $5^3 – 3(5)$ = 110

3) Answer (B)

$(x – 3y)^{3} = x^3 – (3y)^3 – 3x.3y(x – 3y)$

($(a – b)^3 = a^3 – b^3 – 3ab(a – b)$)

= $x^3 – 27y^3 – 9xy(x – 3y)$

= $x^3 – 27y^3 – 9x^2y – 27xy^2$

The coefficient of x = 27$y^2$

4) Answer (D)

$\left(\frac{x}{3} + \frac{y}{5}\right)^3$

($\because (a + b)^3 = a^3 + b^3 + 3ab(a + b)$)

=  $(\frac{x}{3})^3 + (\frac{y}{5})^3 + 3(\frac{x}{3})(\frac{y}{5})(\frac{x}{3} + \frac{y}{5}) $

= $\frac{x^3}{27} + \frac{y^3}{125} + \frac{xy}{5} (\frac{x}{3} + \frac{y}{5}) $

= $\frac{x^3}{27} + \frac{y^3}{125} + \frac{x^2y}{15} + \frac{xy^2}{25} $

5) Answer (B)

$(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$

$(a + b + c)^2 = 300 + 2(50)$

$(a + b + c)^2 = 400$

a + b + c = 20

6) Answer (C)

$x^3 + y^3 + z^3 — 3xyz = (x + y + z)(x^2 + y^2 + z^2 – xy – yz – xz)$

x + y + z = 10

Taking square on both sides,

$(x + y + z)^2 = 100$

$x^2 + y^2 + z^2 + 2(xy + yz + xz) = 100$

$x^2 + y^2 + z^2 = 100 – 2\times 15 = 00 – 30 = 70$

$x^3 + y^3 + z^3 — 3xyz = (10)(70 – 15) = 10 \times 55 = 550$

7) Answer (B)

$x^{2} —4x+4=0 $

$x^{2} —2x – 2x+4=0 $

$x(x — 2) – 2(x — 2)=0 $

$(x — 2)(x — 2)=0 $

x = 2

now,

16$(x^{4}-\frac{1}{x^{4}})$

= 16$(2^{4}-\frac{1}{2^{4}})$

= 16$(16-\frac{1}{16})$

= $16^2 – 1$ = 255

8) Answer (A)

$a^{3}+\frac{1}{a^{3}} = 52$

$(a + \frac{1}{a})^3 – 3.a.\frac{1}{a}(a + \frac{1}{a}) = 52$

$(\because a^3 + b^3 = (a + b)^3 – 3ab(a + b))$

$(a + \frac{1}{a})^3 – 3(a + \frac{1}{a}) = 52$

From the option A) –

Put the value of $2(a + \frac{1}{a}) = 8$,

$(a + \frac{1}{a}) = 4$

L.H.S.,

$4^3 – 3 \times 4$ = 52

= R.H.S.

$\therefore$ The value of $2\left(a + \frac{1}{a}\right)$ is 8.

9) Answer (A)

$b + c = ax, c + a = by, a + b = cz$

x =$\frac{b + c}{a}$

y =$\frac{c + a}{b}$

z =$\frac{a + b}{c}$

Now,

$\frac{1}{9}\left[\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right]$

x + 1 = $\frac{b + c}{a}$ + 1 = $\frac{a + b + c}{a}$

y + 1 = $\frac{c + a}{b}$ + 1 = $\frac{a + b + c}{b}$

z + 1 = $\frac{a + b}{c}$ + 1 = $\frac{a + b + c}{c}$

= $\frac{1}{9}\left[\frac{1}{\frac{a + b + c}{a}}+\frac{1}{\frac{a + b + c}{b}}+\frac{1}{\frac{a + b + c}{c}}\right]$

$\frac{1}{9}\left[\frac{a}{a + b + c}+\frac{b}{a + b + c}+\frac{c}{a + b + c}\right]$

$\frac{1}{9}[\frac{a + b + c}{a + b + c}]$ = 1/9

10) Answer (D)

$(a + b + 2c)(a^{2} + b^{2} + 4c^{2} – ab – 2bc – 2ca)$

$= a^3 + b^3 + (2c)^3 – 3 \times a \times b \times 2c$

$(\because a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} – ab – bc – ca))$

$= a^3 + b^3 + 8c^3 – 6abc$

11) Answer (A)

$25a^{2}-9$

= $(5a)^2 – (3)^2$
= ($\because a^2 – b^2 = (a + b)(a – b)$)

= (5a + 3)(5a – 3)

12) Answer (C)

$a^{4} + \frac{1}{a^{4}} = 50$

$a^{4} + \frac{1}{a^{4}} + 2= 50 + 2$

$(a^2+\frac{1}{a^2})^2=52$

$(a^2+\frac{1}{a^2})=\sqrt{52}$

$a^2+\frac{1}{a^2} + 2 = \sqrt{52} + 2$

$(a + \frac{1}{a})^2 = \sqrt{52} + 2$

$(a + \frac{1}{a}) = \sqrt{\sqrt{52} + 2}$

$a^{3} + \frac{1}{a^{3}} = (a + b)^3 + 3ab(a + b)$

=$(\sqrt{\sqrt{52} + 2})^3 + \sqrt{\sqrt{52} + 2}$

=$(\sqrt{2\sqrt{13} + 2})^3 + \sqrt{2\sqrt{13} + 2}$

=$\sqrt{2\sqrt{13} + 2}(1 + (\sqrt{2\sqrt{13} + 2})^2)$

=$\sqrt{2\sqrt{13} + 2}(1 + {2\sqrt{13} + 2})$

=$\sqrt{2(\sqrt{13} + 1})(3 + {2\sqrt{13}})$

13) Answer (A)

$(a + b – c + d)^2 – (a – b + c – d)^2$

= [(a + b – c + d) + (a – b + c – d)][(a + b – c + d) – (a – b + c – d)]

($\because a^2 – b^2 = (a + b)(a – b)$)

= (2a)(2b-2c + 2d)

= 4a(b – c + d)

14) Answer (C)

$27a^3 – 2\sqrt{2}b^3 = (3a – \sqrt{2}b)(9a^2 + 2b^2 + 6\sqrt{2}ab)$

($\because a^3 – b^3 = (a – b)(a^2 + ab + b^2)$)

here,

a = 3a

b = $\sqrt{2}b$

15) Answer (D)

$x+3y+2=0$

x + 3y = -2

Taking cube both sides,

$(x + 3y)^3 = -8$

$x^3 + 27y^3 + 3x.3y(x + 3y) = -8$

$x^3 + 27y^3 + 9xy(-2) = -8 $

$x^{3}+27y^{3} -18xy = -8$

$x^{3}+27y^{3}+8-18xy$ = 0

16) Answer (B)

$p^{3}+q^{3} = (p + q)^3 – 3pq(p + q)$

=$7^3 – 3 \times 5(7)$

= 343 – 105 = 238

17) Answer (D)

$30x^2 – 15x + 1 = 0$

Dividing by x,

$30x – 15 + \frac{1}{x} = 0$

$5x – 15/6 + \frac{1}{6x} = 0$

$5x  + \frac{1}{6x} = 5/2$

taking square both side,

$(5x + \frac{1}{6x})^2 = 25/4$

$25x^2 + \frac{1}{36x^2} + 2 \times 5x \times \frac{1}{6x} = 25/4$

$25x^2 + \frac{1}{36x^2} = 25/4 – 5/3$

$25x^2 + \frac{1}{36x^2} = \frac{55}{12} $

18) Answer (A)

We know that,

$a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^2 + b^2 + c^2 – (ab + bc + ac))$

a + b + c = 7

Squaring both sides,

$(a + b + c)^2 = 49$

$a^2 + b^2 + c^2 + 2(ab + bc + ac) = 49$

$a^2 + b^2 + c^2 = 49 + 12 = 61$

$a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^2 + b^2 + c^2 – (ab + bc + ac))$

= 7(61 – (-6)) = 7 $\times$ 67 = 469

19) Answer (D)

Total revenue of the company from the sale of products A, B and D in 2012 and 2013 = 98 + 74 + 74 + 94 + 96 + 102 = 538

Total revenue from the sale of product B in 2013 to 2016 = 96 + 92 + 84 + 98 = 370

Required percentage = $\frac{538 – 370}{370} \times 100$ = 45.4%

20) Answer (A)

$P = \frac{x^4 – 8x}{x^3 – x^2 – 2x}$

$Q = \frac{x^2 + 2x + 1}{x^2 – 4x – 5}$

= $\frac{(x + 1)^2}{x^2 – 4x – 5 + 9 – 9}$

$(P \times Q) \div R$

= $(\frac{x^4 – 8x}{x^3 – x^2 – 2x} \times \frac{x^2 + 2x + 1}{x^2 – 4x – 5}) \div \frac{2x^2 + 4x + 8}{x – 5}$

= $\frac{x^4 – 8x}{x^3 – x^2 – 2x} \times \frac{x^2 + 2x + 1}{x^2 – 4x – 5} \times \frac{x – 5}{2x^2 + 4x + 8}$

= $\frac{x(x^3 – 8)}{x^3 – x^2 – 2x} \times \frac{x^2 + 2x + 1}{x^2 – 4x – 5} \times \frac{x – 5}{2(x^2 + 2x + 4)}$

= $\frac{x(x – 2)(x^2 + 2x – 4)}{x(x^2 – x – 2)} \times \frac{(x + 1)^2}{x^2 – 5x + x – 5} \times \frac{x – 5}{2(x^2 + 2x + 4)}$

= $\frac{(x – 2)}{(x^2 – 2x + x- 2)} \times \frac{(x + 1)^2}{(x +1)(x – 5)} \times \frac{x – 5}{2}$

= $\frac{(x – 2)}{(x – 2)(x + 1)} \times \frac{(x + 1)}{2}$

= $\frac{1}{2}$

Download SSC Preparation App

Enroll to 15 SSC CHSL 2022 Mocks At Just Rs. 149

LEAVE A REPLY

Please enter your comment!
Please enter your name here