Algebra Questions for MAH – CET 2022 – Download PDF
Here you can download CMAT 2022 – important MAH – CET Algebra Questions PDF by Cracku. Very Important MAH – CET 2022 and These questions will help your MAH – CET preparation. So kindly download the PDF for reference and do more practice.
Download Algebra Questions for MAH – CET
Enroll to MAH-CET Crash Course
Question 1:Â If $a^{2}+b^{2}-c^{2}=0$, then the value of $\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$ is:
a)Â 3
b)Â 1
c)Â 0
d)Â 2
Question 2:Â If $a+\frac{1}{a}=5$ then $a^{3} + \frac{1}{a^{3}}$ is:
a)Â 110
b)Â 10
c)Â 80
d)Â 140
Question 3:Â The coefficient of x in $(x – 3y)^{3}$ is :
a)Â $3 y^{2}$
b)Â $27 y^{2}$
c)Â $-27 y^{2}$
d)Â $-3 y^{2}$
Question 4:Â Expand $\left(\frac{x}{3} + \frac{y}{5}\right)^3$
a)Â $\frac{x^3}{27} + \frac{x^2y}{25} + \frac{xy^2}{25} + \frac{y^3}{125}$
b)Â $\frac{x^3}{25} + \frac{x^2y}{15} + \frac{xy^2}{25} + \frac{y^3}{125}$
c)Â $\frac{x^3}{27} + \frac{xy}{15} + \frac{xy^2}{25} + \frac{y^3}{125}$
d)Â $\frac{x^3}{27} + \frac{x^2y}{15} + \frac{xy^2}{25} + \frac{y^3}{125}$
Question 5:Â If $a^2 + b^2 + c^2 = 300$ and $ab + bc + ca = 50$, then what is the value of $a + b + c$ ? (Given that a, b and c are all positive.)
a)Â 22
b)Â 20
c)Â 25
d)Â 15
Take Free MAH-CET mock tests here
Question 6: If x + y + z = 10 and xy + yz + zx = 15, then find the value of $x^3 + y^3 + z^3 — 3xyz$.
a)Â 660
b)Â 525
c)Â 550
d)Â 575
Question 7:Â If $x^{2} – 4x+4=0 $, then the value of 16$(x^{4} – \frac{1}{x^{4}})$ is
a)Â 127
b)Â 255
c)Â $\frac{127}{16}$
d)Â $\frac{255}{16}$
Question 8:Â If $b + c = ax, c + a = by, a + b = cz$, then the value $\frac{1}{9}\left[\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right]$ is:
a)Â $\frac{1}{9}$
b)Â 1
c)Â 0
d)Â $\frac{1}{3}$
Question 9:Â Find the product of $(a + b + 2c)(a^{2} + b^{2} + 4c^{2} – ab – 2bc – 2ca)$
a)Â $a^{3} + b^{3} + 8c^{3} – 2abc$
b)Â $a^{3} + b^{3} + 8c^{3} – abc$
c)Â $a^{3} + b^{3} + 6c^{3} – 6abc$
d)Â $a^{3} + b^{3} + 8c^{3} – 6abc$
Question 10:Â If $a^{3}+\frac{1}{a^{3}} = 52$ then the value of $2\left(a + \frac{1}{a}\right)$ is :
a)Â 8
b)Â 2
c)Â 6
d)Â 4
Question 11:Â $25a^{2}-9$ is factored as
a) $(5a + 3)(5a – 3)$
b)Â $(5a + 1)(5a –Â 9)$
c)Â $(5a – 3)^{2}$
d)Â $(25a +Â 1)(a -9)$
Question 12:Â If $a^{4} + \frac{1}{a^{4}} = 50$, then find the value of $a^{3} + \frac{1}{a^{3}}$
a)Â $\sqrt{2(1+\sqrt{3})}+(-1+2\sqrt{13})$
b)Â $\sqrt{2(1+\sqrt{3})}(3-2\sqrt{13})$
c)Â $\sqrt{2(\sqrt{13}+1)}(3+2\sqrt{13})$
d)Â $\sqrt{2(1-\sqrt{3})}(-1+2\sqrt{13})$
Question 13:Â $(a + b – c + d)^2 – (a – b + c – d)^2 = ?$
a)Â $4a(b + d – c)$
b)Â $2a(a + b – c)$
c)Â $2a(b + c – d)$
d)Â $4a(b – d + c)$
Question 14:Â The value of $27a^3 – 2\sqrt{2}b^3$ is equal to:
a)Â $(3a – \sqrt{2}b)(9a^2 – 2b^2 + 6\sqrt{2}ab)$
b)Â $(3a – \sqrt{2}b)(9a^2 + 2b^2 + 6\sqrt{2}ab)$
c)Â $(3a – \sqrt{2}b)(9a^2 + 2b^2 + 3\sqrt{2}ab)$
d)Â $(3a – \sqrt{2}b)(9a^2 – 2b^2 – 3\sqrt{2}ab)$
Question 15:Â If $x+3y+2=0$ then value of $x^{3}+27y^{3}+8-18xy$ is:
a)Â -2
b)Â 2
c)Â 1
d)Â 0
Question 16:Â If $p+q=7$ and $pq=5$, then the value of $p^{3}+q^{3}$ is:
a)Â 34
b)Â 238
c)Â 448
d)Â 64
Question 17:Â If $30x^2 – 15x + 1 = 0$, then what is the value of $25x^2 + (36x^2)^{-1}$?
a)Â $\frac{9}{2}$
b)Â $6\frac{1}{4}$
c)Â $\frac{65}{12}$
d)Â $\frac{55}{12}$
Question 18:Â If a + b + c = 7 and ab + bc + ca = -6, then the value of $a^3 + b^3 + c^3 – 3abc$ is:
a)Â 469
b)Â 472
c)Â 463
d)Â 479
Question 19: The given table represents the revenue (in ₹ crores) of a company from the sale of four products A, B, C and D in 6 years. Study the table carefully and answer the question that follows. By what percentage is the total revenue of the company from the sale of products A, B and D in 2012 and 2013 more than the total revenue from the sale of product B in 2013 to 2016?(Correct to one decimal place)
a)Â 44.5
b)Â 31.2
c)Â 43.6
d)Â 45.4
Question 20:Â If $P = \frac{x^4 – 8x}{x^3 – x^2 – 2x}, Q = \frac{x^2 + 2x + 1}{x^2 – 4x – 5}$ and $R = \frac{2x^2 + 4x + 8}{x – 5}$, then $(P \times Q) \div R$ is equal to:
a)Â $\frac{1}{2}$
b)Â 1
c)Â 2
d)Â 4
Get 5 MAH-CET mocks at just Rs.299
Answers & Solutions:
1) Answer (D)
If a + b + c = 0 then $a^3 + b^3 + c^3 = 3abc$ so,
$a^{6}+b^{6}-c^{6} = 3a^2b^2c^2$
$\frac{2(a^{6}+b^{6}-c^{6})}{3a^{2}b^{2}c^{2}}$
=Â $\frac{2(3a^{2}b^{2}c^{2})}{3a^{2}b^{2}c^{2}}$ = 2
2) Answer (A)
$a^{3} + \frac{1}{a^{3}}$
= $($a+\frac{1}{a})^3 – 3(a+\frac{1}{a})$
($\because (a + b)^3 = a^3 + b^3 + 3ab(a + b))$
= $5^3 – 3(5)$ = 110
3) Answer (B)
$(x – 3y)^{3} = x^3 – (3y)^3 – 3x.3y(x – 3y)$
($(a – b)^3 = a^3 – b^3 – 3ab(a – b)$)
= $x^3 – 27y^3 – 9xy(x – 3y)$
= $x^3 – 27y^3 – 9x^2y – 27xy^2$
The coefficient of x = 27$y^2$
4) Answer (D)
$\left(\frac{x}{3} + \frac{y}{5}\right)^3$
($\because (a + b)^3 = a^3 + b^3 + 3ab(a + b)$)
=Â $(\frac{x}{3})^3 + (\frac{y}{5})^3 + 3(\frac{x}{3})(\frac{y}{5})(\frac{x}{3} + \frac{y}{5})Â $
= $\frac{x^3}{27} + \frac{y^3}{125} + \frac{xy}{5} (\frac{x}{3} + \frac{y}{5}) $
= $\frac{x^3}{27} + \frac{y^3}{125} + \frac{x^2y}{15} + \frac{xy^2}{25} $
5) Answer (B)
$(a + b + c)^2 =Â a^2 + b^2 + c^2 +Â 2(ab + bc + ca)$
$(a + b + c)^2 = 300 + 2(50)$
$(a + b + c)^2 = 400$
a + b + c = 20
6) Answer (C)
$x^3 + y^3 + z^3 — 3xyz = (x + y + z)(x^2 + y^2 + z^2 – xy – yz – xz)$
x + y + z = 10
Taking square on both sides,
$(x + y + z)^2 = 100$
$x^2 + y^2 + z^2 + 2(xy + yz + xz) = 100$
$x^2 + y^2 + z^2 = 100 – 2\times 15 = 00 – 30 = 70$
$x^3 + y^3 + z^3 — 3xyz = (10)(70 – 15) = 10 \times 55 = 550$
7) Answer (B)
$x^{2} —4x+4=0 $
$x^{2} —2x – 2x+4=0 $
$x(x — 2) – 2(x — 2)=0 $
$(x — 2)(x — 2)=0 $
x = 2
now,
16$(x^{4}-\frac{1}{x^{4}})$
=Â 16$(2^{4}-\frac{1}{2^{4}})$
= 16$(16-\frac{1}{16})$
= $16^2 – 1$ = 255
8) Answer (A)
$b + c = ax, c + a = by, a + b = cz$
x =$\frac{b + c}{a}$
y =$\frac{c + a}{b}$
z =$\frac{a + b}{c}$
Now,
$\frac{1}{9}\left[\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right]$
x + 1 =Â $\frac{b + c}{a}$ + 1 = $\frac{a + b + c}{a}$
y + 1 = $\frac{c + a}{b}$ + 1 = $\frac{a + b + c}{b}$
z + 1 = $\frac{a + b}{c}$ + 1 = $\frac{a + b + c}{c}$
=Â $\frac{1}{9}\left[\frac{1}{\frac{a + b + c}{a}}+\frac{1}{\frac{a + b + c}{b}}+\frac{1}{\frac{a + b + c}{c}}\right]$
$\frac{1}{9}\left[\frac{a}{a + b + c}+\frac{b}{a + b + c}+\frac{c}{a + b + c}\right]$
$\frac{1}{9}[\frac{a + b + c}{a + b + c}]$ = 1/9
9) Answer (D)
$(a + b + 2c)(a^{2} + b^{2} + 4c^{2} – ab – 2bc – 2ca)$
$= a^3 + b^3 + (2c)^3 – 3 \times a \times b \times 2c$
$(\because a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} – ab – bc – ca))$
$=Â a^3 + b^3 + 8c^3 – 6abc$
10) Answer (A)
$a^{3}+\frac{1}{a^{3}} = 52$
$(a + \frac{1}{a})^3 – 3.a.\frac{1}{a}(a + \frac{1}{a}) = 52$
$(\because a^3 + b^3 = (a + b)^3 – 3ab(a + b))$
$(a + \frac{1}{a})^3 – 3(a + \frac{1}{a}) = 52$
From the option A) –
Put the value of $2(a + \frac{1}{a}) = 8$,
$(a + \frac{1}{a}) = 4$
L.H.S.,
$4^3 – 3 \times 4$ = 52
= R.H.S.
$\therefore$ The value of $2\left(a + \frac{1}{a}\right)$ is 8.
11) Answer (A)
$25a^{2}-9$
= $(5a)^2 – (3)^2$
= ($\because a^2 – b^2 = (a + b)(a – b)$)
= (5a + 3)(5a – 3)
12) Answer (C)
$a^{4} + \frac{1}{a^{4}} = 50$
$a^{4} + \frac{1}{a^{4}} + 2= 50 + 2$
$(a^2+\frac{1}{a^2})^2=52$
$(a^2+\frac{1}{a^2})=\sqrt{52}$
$a^2+\frac{1}{a^2} + 2Â = \sqrt{52} + 2$
$(a + \frac{1}{a})^2 =Â \sqrt{52} + 2$
$(a + \frac{1}{a})Â = \sqrt{\sqrt{52} + 2}$
$a^{3} + \frac{1}{a^{3}} = (a + b)^3 + 3ab(a + b)$
=$(\sqrt{\sqrt{52} + 2})^3 +Â \sqrt{\sqrt{52} + 2}$
=$(\sqrt{2\sqrt{13} + 2})^3 + \sqrt{2\sqrt{13} + 2}$
=$\sqrt{2\sqrt{13} + 2}(1 +Â (\sqrt{2\sqrt{13} + 2})^2)$
=$\sqrt{2\sqrt{13} + 2}(1 + {2\sqrt{13} + 2})$
=$\sqrt{2(\sqrt{13} + 1})(3 + {2\sqrt{13}})$
13) Answer (A)
$(a + b – c + d)^2 – (a – b + c – d)^2$
= [(a + b – c + d) +Â (a – b + c – d)][(a + b – c + d) – (a – b + c – d)]
($\because a^2 – b^2 = (a + b)(a – b)$)
= (2a)(2b-2c + 2d)
= 4a(b – c + d)
14) Answer (C)
$27a^3 – 2\sqrt{2}b^3 = (3a – \sqrt{2}b)(9a^2 + 2b^2 + 6\sqrt{2}ab)$
($\because a^3 – b^3 = (a – b)(a^2 +Â ab + b^2)$)
here,
a = 3a
b = $\sqrt{2}b$
15) Answer (D)
$x+3y+2=0$
x + 3y = -2
Taking cube both sides,
$(x + 3y)^3 = -8$
$x^3 + 27y^3 + 3x.3y(x +Â 3y) = -8$
$x^3 + 27y^3 + 9xy(-2) = -8 $
$x^{3}+27y^{3} -18xy = -8$
$x^{3}+27y^{3}+8-18xy$ = 0
16) Answer (B)
$p^{3}+q^{3} = (p + q)^3 – 3pq(p + q)$
=$7^3 – 3 \times 5(7)$
= 343 – 105 = 238
17) Answer (D)
$30x^2 – 15x + 1 = 0$
Dividing by x,
$30x – 15 + \frac{1}{x} = 0$
$5x – 15/6 +Â \frac{1}{6x} = 0$
$5x + \frac{1}{6x} = 5/2$
taking square both side,
$(5x + \frac{1}{6x})^2 = 25/4$
$25x^2 + \frac{1}{36x^2} + 2 \times 5x \times \frac{1}{6x} = 25/4$
$25x^2 + \frac{1}{36x^2} = 25/4 – 5/3$
$25x^2 + \frac{1}{36x^2} = \frac{55}{12} $
18) Answer (A)
We know that,
$a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^2 +Â b^2 +Â c^2 – (ab + bc + ac))$
a + b + c = 7
Squaring both sides,
$(a + b + c)^2 = 49$
$a^2 + b^2 + c^2 + 2(ab + bc + ac) = 49$
$a^2 + b^2 + c^2 = 49 + 12 = 61$
$a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^2 + b^2 + c^2 – (ab + bc + ac))$
= 7(61 – (-6)) = 7 $\times$ 67 = 469
19) Answer (D)
Total revenue of the company from the sale of products A, B and D in 2012 and 2013 = 98 + 74 + 74 + 94 + 96 + 102 = 538
Total revenue from the sale of product B in 2013 to 2016 = 96 + 92 + 84 + 98 = 370
Required percentage = $\frac{538 – 370}{370} \times 100$ = 45.4%
20) Answer (A)
$P = \frac{x^4 – 8x}{x^3 – x^2 – 2x}$
$Q = \frac{x^2 + 2x + 1}{x^2 – 4x – 5}$
=Â $\frac{(x +Â 1)^2}{x^2 – 4x – 5 + 9 – 9}$
$(P \times Q) \div R$
= $(\frac{x^4 – 8x}{x^3 – x^2 – 2x} \times \frac{x^2 + 2x + 1}{x^2 – 4x – 5}) \div \frac{2x^2 + 4x + 8}{x – 5}$
= $\frac{x^4 – 8x}{x^3 – x^2 – 2x} \times \frac{x^2 + 2x + 1}{x^2 – 4x – 5} \times \frac{x – 5}{2x^2 + 4x + 8}$
= $\frac{x(x^3 – 8)}{x^3 – x^2 – 2x} \times \frac{x^2 + 2x + 1}{x^2 – 4x – 5} \times \frac{x – 5}{2(x^2 + 2x + 4)}$
= $\frac{x(x – 2)(x^2 + 2x – 4)}{x(x^2 – x – 2)} \times \frac{(x + 1)^2}{x^2 – 5x + x – 5} \times \frac{x – 5}{2(x^2 + 2x + 4)}$
= $\frac{(x – 2)}{(x^2 – 2x + x- 2)} \times \frac{(x + 1)^2}{(x +1)(x – 5)} \times \frac{x – 5}{2}$
= $\frac{(x – 2)}{(x – 2)(x + 1)} \times \frac{(x + 1)}{2}$
= $\frac{1}{2}$