Algebra Questions For IBPS Clerk Set-3 PDF
Download important Algebra PDF based on previously asked questions in IBPS Clerk and other Banking Exams. Practice Algebra for IBPS Clerk Exam.
Download Algebra Questions For IBPS Clerk Set-3 PDF
Get 25 IBPS Clerk mocks for Rs. 149. Enroll here
Take Free IBPS Clerk Mock Test
Download IBPS Clerk Previous papers PDF
Go to Free Banking Study Material (15,000 Solved Questions)
Question 1: If $\frac{a}{b}=\frac{2}{3}$, then the value of $(5a^3-2a^2b):(3ab^2-b^3)$ is:
a) 16:27
b) 32:29
c) 34:19
d) 27:16
Question 2: If $x + x^{-1} = 2$, then the value of $x^3 + x^{-3}$ is:
a) 3
b) $\frac{1}{2}$
c) 1
d) 2
Question 3: If $(\frac{x}{a}) + (\frac{y}{b}) = 3$ and $(\frac{x}{b}) – (\frac{y}{a}) = 9$, then what is the value of $\frac{x}{y}$?
a) $\frac{( b + 3 a)}{( a – 3 b)}$
b) $\frac{( a + 3 b)}{( b – 3 a)}$
c) $\frac{(1 + 3 a)}{( a + 3 b)}$
d) $\frac{( a + 3 b^2)}{( b – 3 a^2)}$
Question 4: If $x + y = 3$, then what is the value of $x^3 + y^3 + 9xy$?
a) 15
b) 81
c) 27
d) 9
Question 5: If $x = 2 +\surd3, y = 2 – \surd3$ and $z = 1$, then what is the value of $\left(\frac{x}{yz}\right) + \left(\frac{y}{xz}\right) + \left(\frac{z}{xy}\right) + 2 \left[\left(\frac{1}{x}\right) + \left(\frac{1}{y}\right) + \left(\frac{1}{z}\right)\right]$?
a) 25
b) 22
c) 17
d) 43
Question 6: If $(3^{33} + 3^{33} + 3^{33})(2^{33} + 2^{33}) = 6^x$, then what is the value of x?
a) 34
b) 35
c) 33
d) 33.5
Question 7: If $x_1x_2x_3 = 4(4 + x_1 + x_2 + x_3),$ then what is the value of $\left[\frac{1}{(2 + x_1)}\right] + \left[\frac{1}{(2 + x_2)}\right] + \left[\frac{1}{(2 + x_3)}\right]$?
a) 1
b) $\frac{1}{2}$
c) 2
d) $\frac{1}{3}$
Question 8: If $\frac{(a + b)}{c} = \frac{6}{5}$ and $\frac{(b + c)}{a} = \frac{9}{2}$, then what is the value of $\frac{(a + c)}{b}$?
a) $\frac{9}{5}$
b) $\frac{11}{7}$
c) $\frac{7}{11}$
d) $\frac{7}{4}$
Question 9: If $a^3 + 3a^2 + 9a = 1$, then what is the value of $a^3 + (\frac{3}{a})?$
a) 31
b) 26
c) 28
d) 24
IBPS Clerk Important Questions PDF
Free Banking Study Material (15,000 Solved Questions)
Question 10: If $x + y + z = 0$, then what is the value of $\frac{(3y^2 + x^2 + z^2)}{(2y^2 – xz)}?$
a) 2
b) 1
c) $\frac{3}{2}$
d) $\frac{5}{3}$
Question 11: What is the value of $\frac{(1.2)^3 + (0.8)^3 + (0.7)^3 – 2.016}{1.35[(1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56]}$ ?
a) $\frac{1}{4}$
b) $\frac{1}{2}$
c) 1
d) 2
Question 12: If $ x = \sqrt[3]{7}+3$ then the value of $x^{3}-9x^{2}+27x-34$ is:
a) 0
b) 1
c) 2
d) -1
Question 13: Out of the given responses, one of the factors of $(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$is
a) (a + b) (a – b)
b) (a + b) (a + b)
c) (a – b) (a – b)
d) (b – c) (b – c)
Question 14: If 3√2 + √18 + √50 = 15.55, then what is the value of √32 + √72?
a) 13.22
b) 10.83
c) 14.13
d) 16.54
Question 15: The value of $\frac{a}{a-b}+\frac{b}{b-a}$ is
a) (a+b)/(a-b)
b) -1
c) 2ab
d) 1
Daily Free Banking Online Tests
Answers & Solutions:
1) Answer (A)
Let a = 2 and b = 3
Then, $(5a^3-2a^2b):(3ab^2-b^3) = (5\times2^3 – 2\times2^2\times3) : (3\times2\times3^2 – 3^3)$
$= 5\times8 – 2\times4\times3 : 3\times2\times9 – 27$
$= 40-24 : 54-27 = 16 : 27$
2) Answer (D)
Given, $x+\dfrac{1}{x} = 2$
Cubing on both sides
$(x+\dfrac{1}{x})^3 = 2^3$
=> $x^3+\dfrac{1}{x^3}+3\times x\times \dfrac{1}{x}(x+\dfrac{1}{x}) = 8$
=> $x^3+\dfrac{1}{x^3}+3(2) = 8$
Therefore, $x^3+\dfrac{1}{x^3} = 8-6 = 2$
3) Answer (A)
$(\frac{x}{a}) + (\frac{y}{b}) = 3$
bx+ay=3ab
3bx+3ay=9ab
$(\frac{x}{b}) – (\frac{y}{a}) = 9$
ax-by=9ab
3bx+3ay=ax-by
3bx-ax=-by-3ay
x(3b-a)=y(-b-3a)
y/x =(a-3b)/(3a+b)
x/y=(3a+b)(a-3b)
4) Answer (C)
x+y=3
Cubing on both sides
$x^{3}+3xy(x+y)+y^{3}$=27
$x^{3}+3xy(3)+y^{3}$=27
$x^{3}+9xy+y^{3}$=27
5) Answer (A)
$x = 2 +\surd3, y = 2 – \surd3$
$(1/x)=(2 – \surd3)$
$(1/y)=(2 +\surd3)$
$(\frac{x}{yz}$=$(2 +\surd3)/(2 -\surd3)$
=$(2 +\surd3)^{2}$
$(\frac{y}{xz}$=$(2 – \surd3)/((2 +\surd3))$
=$(2 -\surd3)^{2}$
$(\frac{z}{xy}$=1
$(\frac{x}{yz} + \left(\frac{y}{xz}\right) + \left(\frac{z}{xy}\right) + 2 \left[\left(\frac{1}{x}\right) + \left(\frac{1}{y}\right) + \left(\frac{1}{z}\right)\right]$
=$(2 +\surd3)^{2} +(2 -\surd3)^{2}+1+2(2 – \surd3+2 + \surd3+1)$
=14+1+2(5)
=14+1+10
=245
6) Answer (A)
$(3^{33} + 3^{33} + 3^{33})(2^{33} + 2^{33}) = 6^x$
$(3*3^{33})(2*2^{33}) = 6^x$
$(3^{34})(2^{34})=6^x$
$6^{34}=6^x$
x=34
7) Answer (B)
$x_1x_2x_3 = 4(4 + x_1 + x_2 + x_3),$
From clear observation we can say that $x_1=4,x_2=4,x_3=4 $ will satisfy the equation
i.e 4*4*4=4(4+12)
64=64
Therefore $\left[\frac{1}{(2 + x_1)}\right] + \left[\frac{1}{(2 + x_2)}\right] + \left[\frac{1}{(2 + x_3)}\right]$=3(1/6)
=1/2
8) Answer (D)
$\frac{(a + b)}{c} = \frac{6}{5}$
5a+5b=6c
$\frac{(b + c)}{a} = \frac{9}{2}$
2b+2c=9a
9a-2b=2c
27a-6b=6c
5a+5b=6c
27a-6b=5a+5b
22a=11b
b=2a
4a+2c=9a
2c=5a
c=(5/2)a
$\frac{(a + c)}{b}$
=((a+(5/2)a))/2a
=7a/4a
=7/4
9) Answer (C)
$a^3 + 3a^2 + 9a = 1$
$a(a^2 + 3a + 9)=1$
$a^2 + 3a + 9=1/a$
$(a^3-b^3)$=$(a-b)(a^2+ab+b^2)$
for b=3
we have $(a^3-3^3)$=$(a-3)(a^2+3a+9)$
$(a^3-27)$=$(a-3)(1/a)$
$a^3+(3/a)=1+27$
$a^3+(3/a)=28$
10) Answer (A)
Solution 1:
As the answer is independent of variables and so we can assume values for x,y and z an solve
let x=1,y=-1,z=0 therefore x+y+z=1-1+0=0
$\frac{(3y^2 + x^2 + z^2)}{(2y^2 – xz)}$
=$\frac{(3(-1)^2 + 1^2 + 0^2)}{(2(-1)^2 – 1*(0))}$
=$\frac{4}{2}$
=2
Solution 2:$\frac{(3y^2 + x^2 + z^2)}{(2y^2 – xz)}$=k
$(3y^2 + x^2 + z^2)$=$k(2y^2 – xz)$
$x^2 + z^2+kxz$=$2ky^2-3y^2$
We know x+y+z=0
we can see that for k=2
we get $(x+z)^{2}=y^{2}$
x+z+y=0
Therefore value of k=2
Get 25 IBPS Clerk mocks for Rs. 149. Enroll here
11) Answer (D)
$x^3 + y^3 + z^3 -3xyz$=$(x + y + z )(x^{2}+y^{2}+z^{2}-xy-yz-zx)$
x=1.2 y=0.8 z=0.7
$\frac{(1.2)^3 + (0.8)^3 + (0.7)^3 – 2.016}{1.35[(1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56]}$
=$\frac{((2.7)((1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56)}{1.35[(1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56]}$
=2.7/1.35
=2
12) Answer (A)
Given : $ x = \sqrt[3]{7}+3$
=> $x-3=\sqrt[3]7$
Cubing both sides, we get :
=> $(x-3)^3=(\sqrt[3]7)^3$
=> $x^3-27-3(3x)(x-3)=7$
=> $x^3-27-9x^2+27x-7=0$
=> $x^{3}-9x^{2}+27x-34=0$
=> Ans – (A)
13) Answer (A)
Let, X = $a^{2} – b^{2}$, Y = $b^{2} – c^{2}$, Z = $c^{2} – a^{2}$
Then, X + Y + Z = 0 (i.e $a^{2} – b^{2}$ + $b^{2} – c^{2}$ + $c^{2} – a^{2}$ = 0)
We know that,
X$^{3}$ + Y$^{3}$ + Z$^{3}$ = 3XYZ i.e,
$(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$ = 3 ($a^{2} – b^{2}) (b^{2} – c^{2}) (c^{2} – a^{2}$)
One of the factors is,
$a^{2} – b^{2} (or) (a + b)(a – b)$
Hence, option A is the correct answer.
14) Answer (C)
Given : $3\sqrt2+\sqrt{18}+\sqrt{50}=15.55$
=> $3\sqrt2+3\sqrt2+5\sqrt2=15.55$
=> $\sqrt2=\frac{15.55}{11}=1.413$ ———–(i)
To find : $\sqrt{32}+\sqrt{72}$
= $4\sqrt2+6\sqrt2=10\sqrt2$
= $10\times1.413=14.13$
=> Ans – (C)
15) Answer (D)
Expression : $\frac{a}{a-b}+\frac{b}{b-a}$
Taking (-) common from second term
= $\frac{a}{a-b}-\frac{b}{a-b}$
= $\frac{a-b}{a-b}=1$
=> Ans – (D)
Highly Rated Free Preparation App for Banking Exams
We hope this Algebra for IBPS Clerk preparation will be helpful to you.