Algebra Questions For IBPS Clerk Set-3 PDF

0
1917
algebra questions for ibps clerk set-3 pdf
algebra questions for ibps clerk set-3 pdf

Algebra Questions For IBPS Clerk Set-3 PDF

Download important Algebra PDF based on previously asked questions in IBPS Clerk and other Banking Exams. Practice Algebra for IBPS Clerk Exam.

Download Algebra Questions For IBPS Clerk Set-3 PDF

Get 25 IBPS Clerk mocks for Rs. 149. Enroll here

Take Free IBPS Clerk Mock Test

Download IBPS Clerk Previous papers PDF

Go to Free Banking Study Material (15,000 Solved Questions)

Question 1: If $\frac{a}{b}=\frac{2}{3}$, then the value of $(5a^3-2a^2b):(3ab^2-b^3)$ is:

a) 16:27

b) 32:29

c) 34:19

d) 27:16

Question 2: If $x + x^{-1} = 2$, then the value of $x^3 + x^{-3}$ is:

a) 3

b) $\frac{1}{2}$

c) 1

d) 2

Question 3: If $(\frac{x}{a}) + (\frac{y}{b}) = 3$ and $(\frac{x}{b}) – (\frac{y}{a}) = 9$, then what is the value of $\frac{x}{y}$?

a) $\frac{( b + 3 a)}{( a – 3 b)}$

b) $\frac{( a + 3 b)}{( b – 3 a)}$

c) $\frac{(1 + 3 a)}{( a + 3 b)}$

d) $\frac{( a + 3 b^2)}{( b – 3 a^2)}$

IBPS Clerk Online Mock Test

Question 4: If $x + y = 3$, then what is the value of $x^3 + y^3 + 9xy$?

a) 15

b) 81

c) 27

d) 9

Question 5: If $x = 2 +\surd3, y = 2 – \surd3$ and $z = 1$, then what is the value of $\left(\frac{x}{yz}\right) + \left(\frac{y}{xz}\right) + \left(\frac{z}{xy}\right) + 2 \left[\left(\frac{1}{x}\right) + \left(\frac{1}{y}\right) + \left(\frac{1}{z}\right)\right]$?

a) 25

b) 22

c) 17

d) 43

Question 6: If $(3^{33} + 3^{33} + 3^{33})(2^{33} + 2^{33}) = 6^x$, then what is the value of x?

a) 34

b) 35

c) 33

d) 33.5

IBPS Clerk Previous Papers

Question 7: If $x_1x_2x_3 = 4(4 + x_1 + x_2 + x_3),$ then what is the value of $\left[\frac{1}{(2 + x_1)}\right] + \left[\frac{1}{(2 + x_2)}\right] + \left[\frac{1}{(2 + x_3)}\right]$?

a) 1

b) $\frac{1}{2}$

c) 2

d) $\frac{1}{3}$

Question 8: If $\frac{(a + b)}{c} = \frac{6}{5}$ and $\frac{(b + c)}{a} = \frac{9}{2}$, then what is the value of $\frac{(a + c)}{b}$?

a) $\frac{9}{5}$

b) $\frac{11}{7}$

c) $\frac{7}{11}$

d) $\frac{7}{4}$

Question 9: If $a^3 + 3a^2 + 9a = 1$, then what is the value of $a^3 + (\frac{3}{a})?$

a) 31

b) 26

c) 28

d) 24

IBPS Clerk Important Questions PDF

Free Banking Study Material (15,000 Solved Questions)

Question 10: If $x + y + z = 0$, then what is the value of $\frac{(3y^2 + x^2 + z^2)}{(2y^2 – xz)}?$

a) 2

b) 1

c) $\frac{3}{2}$

d) $\frac{5}{3}$

Question 11: What is the value of  $\frac{(1.2)^3 + (0.8)^3 + (0.7)^3 – 2.016}{1.35[(1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56]}$ ?

a) $\frac{1}{4}$

b) $\frac{1}{2}$

c) 1

d) 2

Question 12: If $ x = \sqrt[3]{7}+3$ then the value of $x^{3}-9x^{2}+27x-34$ is:

a) 0

b) 1

c) 2

d) -1

Question 13: Out of the given responses, one of the factors of $(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$is

a) (a + b) (a – b)

b) (a + b) (a + b)

c) (a – b) (a – b)

d) (b – c) (b – c)

Question 14: If 3√2 + √18 + √50 = 15.55, then what is the value of √32 + √72?

a) 13.22

b) 10.83

c) 14.13

d) 16.54

Question 15: The value of $\frac{a}{a-b}+\frac{b}{b-a}$ is

a) (a+b)/(a-b)

b) -1

c) 2ab

d) 1

Daily Free Banking Online Tests

Answers & Solutions:

1) Answer (A)

Let a = 2 and b = 3
Then, $(5a^3-2a^2b):(3ab^2-b^3) = (5\times2^3 – 2\times2^2\times3) : (3\times2\times3^2 – 3^3)$
$= 5\times8 – 2\times4\times3 : 3\times2\times9 – 27$
$= 40-24 : 54-27 = 16 : 27$

2) Answer (D)

Given, $x+\dfrac{1}{x} = 2$

Cubing on both sides

$(x+\dfrac{1}{x})^3 = 2^3$

=> $x^3+\dfrac{1}{x^3}+3\times x\times \dfrac{1}{x}(x+\dfrac{1}{x}) = 8$

=> $x^3+\dfrac{1}{x^3}+3(2) = 8$

Therefore, $x^3+\dfrac{1}{x^3} = 8-6 = 2$

3) Answer (A)

$(\frac{x}{a}) + (\frac{y}{b}) = 3$
bx+ay=3ab
3bx+3ay=9ab
$(\frac{x}{b}) – (\frac{y}{a}) = 9$
ax-by=9ab
3bx+3ay=ax-by
3bx-ax=-by-3ay
x(3b-a)=y(-b-3a)
y/x =(a-3b)/(3a+b)
x/y=(3a+b)(a-3b)

4) Answer (C)

x+y=3
Cubing on both sides
$x^{3}+3xy(x+y)+y^{3}$=27
$x^{3}+3xy(3)+y^{3}$=27
$x^{3}+9xy+y^{3}$=27

5) Answer (A)

$x = 2 +\surd3, y = 2 – \surd3$
$(1/x)=(2 – \surd3)$
$(1/y)=(2 +\surd3)$

$(\frac{x}{yz}$=$(2 +\surd3)/(2 -\surd3)$

=$(2 +\surd3)^{2}$

$(\frac{y}{xz}$=$(2 – \surd3)/((2 +\surd3))$

=$(2 -\surd3)^{2}$

$(\frac{z}{xy}$=1

$(\frac{x}{yz} + \left(\frac{y}{xz}\right) + \left(\frac{z}{xy}\right) + 2 \left[\left(\frac{1}{x}\right) + \left(\frac{1}{y}\right) + \left(\frac{1}{z}\right)\right]$

=$(2 +\surd3)^{2} +(2 -\surd3)^{2}+1+2(2 – \surd3+2 + \surd3+1)$
=14+1+2(5)
=14+1+10
=245

6) Answer (A)

$(3^{33} + 3^{33} + 3^{33})(2^{33} + 2^{33}) = 6^x$
$(3*3^{33})(2*2^{33}) = 6^x$
$(3^{34})(2^{34})=6^x$
$6^{34}=6^x$
x=34

7) Answer (B)

$x_1x_2x_3 = 4(4 + x_1 + x_2 + x_3),$
From clear observation we can say that $x_1=4,x_2=4,x_3=4 $ will satisfy the equation
i.e 4*4*4=4(4+12)
64=64
Therefore $\left[\frac{1}{(2 + x_1)}\right] + \left[\frac{1}{(2 + x_2)}\right] + \left[\frac{1}{(2 + x_3)}\right]$=3(1/6)
=1/2

8) Answer (D)

$\frac{(a + b)}{c} = \frac{6}{5}$
5a+5b=6c
$\frac{(b + c)}{a} = \frac{9}{2}$
2b+2c=9a
9a-2b=2c
27a-6b=6c
5a+5b=6c
27a-6b=5a+5b
22a=11b
b=2a
4a+2c=9a
2c=5a
c=(5/2)a
$\frac{(a + c)}{b}$
=((a+(5/2)a))/2a
=7a/4a
=7/4

9) Answer (C)

$a^3 + 3a^2 + 9a = 1$
$a(a^2 + 3a + 9)=1$
$a^2 + 3a + 9=1/a$
$(a^3-b^3)$=$(a-b)(a^2+ab+b^2)$
for b=3
we have $(a^3-3^3)$=$(a-3)(a^2+3a+9)$
$(a^3-27)$=$(a-3)(1/a)$
$a^3+(3/a)=1+27$
$a^3+(3/a)=28$

10) Answer (A)

Solution 1:
As the answer is independent of variables and so we can assume values for x,y and z an solve
let x=1,y=-1,z=0 therefore x+y+z=1-1+0=0
$\frac{(3y^2 + x^2 + z^2)}{(2y^2 – xz)}$
=$\frac{(3(-1)^2 + 1^2 + 0^2)}{(2(-1)^2 – 1*(0))}$
=$\frac{4}{2}$
=2
Solution 2:$\frac{(3y^2 + x^2 + z^2)}{(2y^2 – xz)}$=k
$(3y^2 + x^2 + z^2)$=$k(2y^2 – xz)$
$x^2 + z^2+kxz$=$2ky^2-3y^2$
We know x+y+z=0
we can see that for k=2
we get $(x+z)^{2}=y^{2}$
x+z+y=0
Therefore value of k=2

Get 25 IBPS Clerk mocks for Rs. 149. Enroll here

11) Answer (D)

$x^3 + y^3 + z^3 -3xyz$=$(x + y + z )(x^{2}+y^{2}+z^{2}-xy-yz-zx)$
x=1.2 y=0.8 z=0.7
$\frac{(1.2)^3 + (0.8)^3 + (0.7)^3 – 2.016}{1.35[(1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56]}$

=$\frac{((2.7)((1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56)}{1.35[(1.2)^2 + (0.8)^2 + (0.7)^2 – 0.96 – 0.84 – 0.56]}$

=2.7/1.35

=2

12) Answer (A)

Given : $ x = \sqrt[3]{7}+3$

=> $x-3=\sqrt[3]7$

Cubing both sides, we get :

=> $(x-3)^3=(\sqrt[3]7)^3$

=> $x^3-27-3(3x)(x-3)=7$

=> $x^3-27-9x^2+27x-7=0$

=> $x^{3}-9x^{2}+27x-34=0$

=> Ans – (A)

13) Answer (A)

Let, X = $a^{2} – b^{2}$, Y = $b^{2} – c^{2}$, Z = $c^{2} – a^{2}$

Then, X + Y + Z = 0 (i.e $a^{2} – b^{2}$ + $b^{2} – c^{2}$ + $c^{2} – a^{2}$ = 0)

We know that,

X$^{3}$ + Y$^{3}$ + Z$^{3}$ = 3XYZ i.e,

$(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$ = 3 ($a^{2} – b^{2}) (b^{2} – c^{2}) (c^{2} – a^{2}$)

One of the factors is,

$a^{2} – b^{2} (or) (a + b)(a – b)$

Hence, option A is the correct answer.

14) Answer (C)

Given : $3\sqrt2+\sqrt{18}+\sqrt{50}=15.55$

=> $3\sqrt2+3\sqrt2+5\sqrt2=15.55$

=> $\sqrt2=\frac{15.55}{11}=1.413$ ———–(i)

To find : $\sqrt{32}+\sqrt{72}$

= $4\sqrt2+6\sqrt2=10\sqrt2$

= $10\times1.413=14.13$

=> Ans – (C)

15) Answer (D)

Expression : $\frac{a}{a-b}+\frac{b}{b-a}$

Taking (-) common from second term

= $\frac{a}{a-b}-\frac{b}{a-b}$

= $\frac{a-b}{a-b}=1$

=> Ans – (D)

Highly Rated Free Preparation App for Banking Exams

4 Free IBPS Clerk Mock Tests

We hope this Algebra for IBPS Clerk preparation will be helpful to you.

LEAVE A REPLY

Please enter your comment!
Please enter your name here