Algebra Questions for MAH MBA CET Exam
Download MAH MBA CET Algebra Questions and Answers PDF covering the important questions. Most expected Algebra questions with explanations for MAH MBA CET / MMS CET 2021 exam.
Download Important Questions on Algebra for MHCET Exam
Enroll to MAH MBA CET Crash Course
Take a MAH MBA CET Free Mock Test
Get 10 MAH MBA CET mocks for just Rs. 499
Question 1:Â $\sqrt{8 + \sqrt{57 + \sqrt{38 + \sqrt{108 + \sqrt{169}}}}}$
a)Â 4
b)Â 6
c)Â 8
d)Â 10
Question 2:Â If a * b = 2a + 3b – ab, then the value of (3 * 5 + 5 * 3) is
a)Â 10
b)Â 6
c)Â 4
d)Â 2
Question 3: If a * b = $a^{b}$, then the value of 5 * 3 is
a)Â 125
b)Â 243
c)Â 53
d)Â 15
Question 4:Â If $x = 1 + \sqrt{2} + \sqrt{3}$ , then the value of $(2x^4 – 8x^3 – 5x^2 + 26x- 28)$ is __?
a)Â $6\sqrt{6}$
b)Â $0$
c)Â $3\sqrt{6}$
d)Â $2\sqrt{6}$
Question 5:Â If $a^2+b^2+c^2=2(a-2b-c-3)$ then the value of a+b+c is
a)Â 3
b)Â 0
c)Â 2
d)Â 4
Take a MAH MBA CET Free Mock Test
Get 10 MAH MBA CET mocks for just Rs. 499
Question 6:Â Find the simplest value of $2\sqrt{50} + \sqrt{18} – \sqrt{72}$ is __? $(\sqrt{2} = 1.414)$.
a)Â 9.898
b)Â 10.312
c)Â 8.484
d)Â 4.242
Question 7:Â If $a^{3}-b^{3}-c^{3}=0$ then the value of $a^{9}-b^{9}-c^{9}-3a^{3} b^{3} c^{3}$ is
a)Â 1
b)Â 2
c)Â 0
d)Â -1
Question 8:Â If $\frac{p^2}{q^2}+\frac{q^2}{p^2}$=1 then the value of $(p^{6}+q^{6})$ is
a)Â 0
b)Â 1
c)Â 2
d)Â 3
Question 9:Â If $(m+1) = \sqrt{n}+3$ the value of $\frac{1}{2}(\frac{m^{3}-6m^{2}+12m-8}{\sqrt{n}}-n)$
a)Â 0
b)Â 1
c)Â 2
d)Â 3
Question 10:Â If $x=\frac{a-b}{a+b},y=\frac{b-c}{b+c},z=\frac{c-a}{c+a}$ then $\frac{(1-x)(1-y)(1-z)}{(1+x)(1+y)(1+z)}$ is equal to
a)Â 1
b)Â 0
c)Â 2
d)Â $\frac{1}{2}$
Enroll to MAH MBA CET Crash Course
Join MAH MBA CET Telegram Group
Question 11:Â If $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+\sqrt{7} b$ the values of a and b are respectively
a)Â $\sqrt{7},-1$
b)Â $\sqrt{7}, 1$
c)Â $0, -\frac{2}{3}$
d)Â $-\frac{2}{3}, 0$
Question 12:Â If m = – 4, n = – 2, then the value of $m^3 – 3m^2 + 3m + 3n + 3n^2 + n^3$ is
a)Â – 126
b)Â 124
c)Â – 124
d)Â 126
Question 13:Â If $x+\frac{1}{x}=1$ then the value of $\frac{x^2+3x+1}{x^2+7x+1}$
a)Â $1$
b)Â $\frac{3}{7}$
c)Â $\frac{1}{2}$
d)Â 2
Question 14:Â If $x=\sqrt{a^3\sqrt{b}\sqrt{a^3}\sqrt{b}}$ then the value of x is
a)Â $\sqrt[5]{ab^3}$
b)Â $\sqrt[3]{a^3b}$
c)Â $\sqrt[3]{a^5b}$
d)Â $a^2\sqrt b\sqrt[4]{a}$
Question 15:Â If the cube root of 79507 is 43, then the value of $\sqrt[3]{79.507}+\sqrt[3]{0.079507}+\sqrt[3]{0.000079507}$
is
a)Â 0.4773
b)Â 477.3
c)Â 47.73
d)Â 4.773
Free MAH MBA CET Preparation Videos
Take a MAH MBA CET Free Mock Tests
Question 16:Â If $\frac{x}{y}$=$\frac{3}{4}$ the ratio of $(2x+3y)$ and $(3y-2x)$ is
a)Â 2 : 1
b)Â 3 : 2
c)Â 1 : 1
d)Â 3 : 1
Question 17:Â If m – 5n = 2, then the vlaue of $(m^{3} – 125n^{3}$ – 30 mn) is
a)Â 6
b)Â 7
c)Â 8
d)Â 9
Question 18:Â If $x+\frac{1}{x}=2$ then the value of $x^{12}+\frac{1}{x^{12}}$ is
a)Â 2
b)Â -4
c)Â 0
d)Â 4
Question 19:Â If 5x + 9y = 5 and $125x^{3}$ + $729y^{3}$ = 120 then the value of the product of x and y is
a)Â $\frac{1}{9}$
b)Â $\frac{1}{135}$
c)Â $45$
d)Â $135$
Question 20:Â What is the value of $\frac{(941+149)^{2}+(941-149)^{2}}{(941\times941+149\times149)}?$
a)Â 10
b)Â 2
c)Â 1
d)Â 100
Enroll to MAH MBA CET Crash Course
Get 10 MAH MBA CET mocks for just Rs. 499
Answers & Solutions:
1) Answer (A)
Start from the root of 169 then second root will reduce to 11, thrid root will reduce to 7, fourth root will reduce to 8, and finally it reduce to value 4
2) Answer (A)
For 3*5 put a=3 and b=5 in given equation
and for 5*3 put a=5 and b=3 in equation
now add both values
3) Answer (A)
Put a=5 and b=3 in given equation
hence it will be $5^{3}$ = 125
4) Answer (A)
x = 1+ $\sqrt {2} + \sqrt {3} $
$(x-1)^{2}$ = $(\sqrt {2} + \sqrt {3}) ^ {2} $
$x^{2} +1 – 2x = 5 + 2 \sqrt {6}$
$x^{2} – 2x = 4 + 2 \sqrt {6}$ ( eq. (1) )
$(x^{2} – 2x)^{2} = x^{4} + 4x^{2} – 4x^{3} = 40 + 16\sqrt{6} $ eq (2)
Now in $2x^{4} – 8x^{3} – 5x^{2} + 26x – 28 $
or $2(x^{4} – 4x^{3}) – 5x^{2} + 26x – 28 $ ( putting values from eq (1) and eq (2) )
After solving we will get it reduced to $6\sqrt{6}$
5) Answer (B)
Given $a^2+b^2+ c^2=2(a-2b-c-3)$,
So, $(a-1)^2+(b+2)^2+(c-1)^2=0$
Hence, a=1, b=-2 and c=1
So, the sum of the equation is
6) Answer (A)
Given equation can be reduced in the form of $10\sqrt2 + 3\sqrt2 – 6\sqrt2 = 7\sqrt2$
Hence  $7\sqrt2$ will be around 9.898
7) Answer (C)
shortcut :
put c = 0 in  $a^{3}-b^{3}-c^{3}=0$ $\Rightarrow$ $a^{3}=b^{3}$
$a^{9}-b^{9}-(0)^{9}-3a^{3} b^{3} (0)^{3}$ =Â $a^{9}-b^{9}$ =Â $(a^{3})^{3}-(b^{3})^{3}$ =Â Â $(a)^{3}-(a)^{3}$ = 0Â ( $\because$ $a^{3}=b^{3}$ )
so the answer is option C.
normal method :
$a^{3}-b^{3}-c^{3}=0$
$a^{3}=b^{3}+c^{3}$
cubing on both sides,
$(a^{3})^{3}=(b^{3}+c^{3})^{3}$
$a^{9}=b^{9}+c^{9}+3b^{3} c^{3}(b^{3}+c^{3})$
$a^{9}=b^{9}+c^{9}+3b^{3} c^{3}(a^{3})$
$a^{9}-b^{9}-c^{9}-3a^{3}b^{3} c^{3}=0$
so the answer is option C.
8) Answer (A)
Expression : $\frac{p^2}{q^2}+\frac{q^2}{p^2}$ = 1
=> $\frac{p^{4}+q^{4}}{p^2q^2}$ = 1
=> $p^4+q^4 = p^2q^2$ ————–Eqn(1)
Now, to find : $(p^{6}+q^{6})$
=> $(p^2)^3 + (q^2)^3$
Using the formula, $a^3 + b^3 = (a+b)(a^2+b^2-ab)$
=> $(p^2+q^2)(p^4+q^4-p^2q^2)$
From eqn (1), we get :
=> $(p^2+q^2)(p^2q^2-p^2q^2)$
=> $(p^2+q^2)*0$
= 0
9) Answer (A)
If $(m+1) = \sqrt{n}+3$
=> $m-2 = \sqrt{n}$ ————–Eqn(1)
to find : $\frac{1}{2}(\frac{m^{3}-6m^{2}+12m-8}{\sqrt{n}}-n)$
$\because (m-2)^3 = m^{3}-6m^{2}+12m-8$
=> $\frac{1}{2}(\frac{(m-2)^3}{\sqrt{n}}-n)$
Using eqn(1), we get :
=> $\frac{1}{2}(\frac{(\sqrt{n})^3}{\sqrt{n}}-n)$
=> $\frac{1}{2}(n-n)$
= 0
10) Answer (A)
If $x=\frac{a-b}{a+b}$
=> $(1-x) = 1- (\frac{a-b}{a+b})$
=> $(1-x) = \frac{2b}{a+b}$
Similarly, $(1+x) = \frac{2a}{a+b}$
Applying the same method, we get :
=> $(1-y) = \frac{2c}{b+c}$ and => $(1+y) = \frac{2b}{b+c}$
=> $(1-z) = \frac{2a}{c+a}$ and => $(1+z) = \frac{2c}{c+a}$
Putting above values in the equation : $\frac{(1-x)(1-y)(1-z)}{(1+x)(1+y)(1+z)}$
=> $\frac{(\frac{2b}{a+b})(\frac{2c}{b+c})(\frac{2a}{c+a})}{(\frac{2a}{a+b})(\frac{2b}{b+c})(\frac{2c}{c+a})}$
=> $\frac{2a*2b*2c}{2a*2b*2c}$
= 1
Free MAH MBA CET Preparation Videos
Take a MAH MBA CET Free Mock Tests
11) Answer (C)
$\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+\sqrt{7} b$
L.H.S. = $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}$
= $\frac{(\sqrt{7}-1)^2 – (\sqrt{7}+1)^2}{(\sqrt{7}-1)(\sqrt{7}+1)}$
= $\frac{(7+1-2\sqrt{7})-(7+1+2\sqrt{7})}{7-1}$
= $\frac{-4\sqrt{7}}{6}$
= $\frac{-2\sqrt{7}}{3}$
Now, comparing with R.H.S. $a+\sqrt{7} b$
we get,
$a=0$ and $b=\frac{-2}{3}$
12) Answer (A)
We are given that m = -4 and n = -2
Expression : $m^3 – 3m^2 + 3m + 3n + 3n^2 + n^3$
= $(m^3 – 3m^2 + 3m – 1) + (n^3 + 3n^2 + 3n + 1)$
= $(m-1)^3 + (n+1)^3$
= $(-4-1)^3 + (-2+1)^3$
= $(-5)^3 + (-1)^3$
= $-125 – 1 = -126$
13) Answer (C)
Expression : $x+\frac{1}{x}=1$
=> $x^2 + 1 = x$ ——Eqn(1)
To find : $\frac{x^2+3x+1}{x^2+7x+1}$
= $\frac{(x^2+1) + 3x}{(x^2+1) + 7x}$
Using eqn(1),we get :
= $\frac{x + 3x}{x + 7x} = \frac{4}{8}$
= $\frac{1}{2}$
14) Answer (D)
$x=\sqrt{a^3\sqrt{b}\sqrt{a^3}\sqrt{b}}$.
here we know that $\sqrt{b} \times \sqrt{b}$ = b
and $\sqrt{a^3} = a\sqrt{a}$
hence,$x=\sqrt{a^3\sqrt{b}\sqrt{a^3}\sqrt{b}}$ = $a^2\sqrt b\sqrt[4]{a}$
15) Answer (D)
Since $\sqrt[3]{79507}$ = 43
=> $\sqrt[3]{79.507}$ = 4.3
=> $\sqrt[3]{0.079507}$ = 0.43
=> $\sqrt[3]{0.000079507}$ = 0.043
=> 4.3+0.43+0.043 = 4.773
16) Answer (D)
Let $x = 3k$ and $y = 4k$
=> $\frac{2x + 3y}{3y – 2x}$
= $\frac{6k + 12k}{12k – 6k}$
= $\frac{18}{6}$
= $\frac{3}{1}$ = 3 : 1
17) Answer (C)
Using the formula, $(x-y)^3 = x^3 – y^3 -3xy(x-y)$
=> $(m – 5n)^3 = m^3 – 125n^3 – 15mn(m-5n)$
=> $2^3 = m^3 – 125n^3 – 15mn*2$
=> $m^3 – 125n^3 – 30mn = 8$
18) Answer (A)
Expression : $x+\frac{1}{x}=2$
Squaring both sides
=> $x^2 + \frac{1}{x^2} + 2 = 4$
=> $x^2 + \frac{1}{x^2} = 2$
Cubing both sides
=> $x^6 + \frac{1}{x^6} + 3.x.\frac{1}{x}(x+\frac{1}{x}) = 8$
=> $x^6 + \frac{1}{x^6} = 8-6 = 2$
Again, squaring both sides, we get :
=> $x^{12} + \frac{1}{x^{12}} + 2 = 4$
=> $x^{12} + \frac{1}{x^{12}} = 2$
19) Answer (B)
Expression : $5x + 9y = 5$
Cubing both sides, we get :
=> $(5x + 9y)^3 = 125$
=> $125x^3 + 729y^3 + 135xy(5x+9y) = 125$
=> $125x^3 + 729y^3 + 135xy*5 = 125$
Since, $125x^{3}$ + $729y^{3} = 120$
=> $xy = \frac{5}{5*135} = \frac{1}{135}$
20) Answer (B)
Expression : $\frac{(941+149)^{2}+(941-149)^{2}}{(941\times941+149\times149)}$
= $\frac{(941^2 + 149^2 + 2.941.149) + (941^2 + 149^2 – 2.941.149)}{941^2 + 149^2}$
= $\frac{2 * (941^2 + 149^2)}{941^2 + 149^2}$
= 2