Lines and Angles Questions for SSC CGL PDF

0
4920
Lines and Angles Questions for SSC CGL PDF
Lines and Angles Questions for SSC CGL PDF

Lines and Angles Questions for SSC CGL PDF

Download SSC CGL Lines and Angles Questions with answers  PDF based on previous papers very useful for SSC CGL exams. Very Important Lines and Angles Questions for SSC exams

Download Lines and Angles Questions for SSC CGL

Take a free SSC CGL mock test

Get 200 SSC mocks for just Rs. 249. Enroll here

Take a free mock test for SSC CGL

Download SSC CGL Previous Papers PDF

More SSC CGL Important Questions and Answers PDF

Question 1: BC is the centre of the circle with centre O. A is a point on major arc BC as shown in the above figure. What is the value of BAC+OBC ?

a) 120

b) 60

c) 90

d) 180

Question 2: AC and BC are two equal cords of a circle. BA is produced to any point P and CP, when joined cuts the circle at T. Then

a) CT : TP = AB : CA

b) CT : TP = CA : AB

c) CT : CB = CA : CP

d) CT : CB = CP : CA

Question 3: If an obtuse-angled triangle ABC, is the obtuse angle and O is the orthocenter. If = 54 , then is

a) 108

b) 126

c) 136

d) 116

Question 4: The external bisectors of and of meet at point P. If = 80 , the is

a) 50

b) 40

c) 80

d) 100

Question 5: In a triangle ABC, A=90o,C=55o,AD is perpendicular to BC. What is the value of BAD ?

a) 60

b) 45

c) 55

d) 35

Question 6: If O be the circumcentre of a triangle PQR and QOR=110o,OPR=25o, then the measure of PRQ is

a) 50

b) 55

c) 60

d) 65

SSC CGL Previous Papers Download PDF

SSC CGL Free Mock Test

Question 7: A, B, C, D are four points on a circle. AC and BD intersect at a point such that BEC=130o and ECD=20o. Then, BAC is

a) 90

b) 100

c) 110

d) 120

Question 8: ABC is a triangle. The bisectors of the internal angle B and external C intersect at D. If BDC=50, then A is

a) 100

b) 90

c) 120

d) 60

Question 9: In a triangle ABC, the side BC is extended up to D. Such that CD = AC, if angleBAD = 109° and angleACB=72° then the value of angleABC is

a) 35°

b) 60°

c) 40°

d) 45°

Question 10: The line passing through (-2,5) and (6,b) is perpendicular to the line 20x + 5y = 3. Find b?

a) -7

b) 4

c) 7

d) -4

Question 11: The co-ordinates of the centroid of a triangle ABC are (-1,-2) what are the co-ordinates of vertex C, if co-ordinates of A and B are (6,-4)  and (-2,2) respectively?

a) (-7,-4)

b) (7,4)

c) (7,-4)

d) (-7,4)

Question 12: Find equation of the perpendicular bisector of segment joining the points (2,-6) and (4,0)?

a) x + 3y = 6

b) x + 3y = -6

c) x – 3y = -6

d) x – 3y = 6

Question 13:  ­ In what ratio is the segment joining (12,­1) and (­3,4) divided by the Y ­axis?

a) 4:1

b) 1:4

c) 4:3

d) 3:4

Question 14: The line passing through (4,3) and (y,0) is parallel to the line passing through (­1,2) and (3,0). Find y?

a) ­1

b) 7

c) 2

d) ­5

Question 15: What is the slope of the line perpendicular to the line passing through the points (8,­2) and (3,­1)?

a) -5

b) 3/5

c) 5/3

d) 1/5

FREE SSC EXAM YOUTUBE VIDEOS

18000+ Questions – Free SSC Study Material

Answers & Solutions:

1) Answer (C)

As we know that angle through an arc on centre is double that of made on remaining arc.
Hence BOC=2BAC=2x (where x=BAC)
and  OBC would be 90-x
So  BAC+OBC=90

2) Answer (C)

It is given that AC = BC, also PTB and  PAC are similar, we have :

CACP=BTBP —————-(i)

Also, we have  PBC =  BTC (  PBC = BAC =  BTC) and  PCB =  BCT

=>  PBC  BTC

Thus, CBBP=CTBT

=> BTBP=CTCB ————–(ii)

From equations (i) and (ii), we get :

CACP=CTCB

=> Ans – (C)

3) Answer (B)

4) Answer (A)

5) Answer (C)

A=90o
C=55o
B will be 180(90+55)=35o
As AD is perpendicular to BC Hence BAD=180(90+35)=55o

6) Answer (C)

As we know circumcentre O is perpendicular bisector of sides of a triangle.
And QOR=110o
and OQ=OR (radius) hence angles OQR and ORQ will be also be equal.
Which will have value equal to 1801102=35o
Now angle OPR and PRO will also have equal value as 25o.
So angle PQR will be 35+25 = 60o

7) Answer (C)

Angle ABD will be equal to angle ACD = 20o (same sector angles)
Angle BEC = 130o so angle AED = 130o (concurrent angles)
Now angle BEA will be 3601301302=50o
So angle EDC will be 180(50+20)=110o

8) Answer (A)

In BDC,

=> y+(1802x+x)+50=180

=> yx+50=0

=> yx=50

In ABC,

=> 2y+(1802x)+A=180

=> 2(yx)+A=0

=> 2(50)+A=0

=> A=100

=> Ans – (A)

9) Answer (A)


Angle ACB =72o
Angle ACD = 108o
Angle CAD = Angle ADC = 36o
Angle BAD = Angle BAC + Angle CAD =109o
Angle BAC = 73o
Angle ABC = 180 – Angle BAC – Angle ACB = 180 – 73 – 72 = 35o
Hence Option A is the correct answer.

10) Answer (C)

Slope of line having equation : ax+by+c=0 is ab

=> Slope of line 20x+5y=3 is 205=4

Slope line passing through (-2,5) and (6,b) = b56+2=(b5)8

Also, product of slopes of two perpendicular lines is -1

=> (b5)8×4=1

=> b5=84=2

=> b=2+5=7

=> Ans – (C)

11) Answer (A)

Coordinates of centroid of triangle with vertices (x1,y1) , (x2,y2) and (x3,y3) is (x1+x2+x33,y1+y2+y33)

Let coordinates of vertex C = (x,y)

Vertex A(6,-4) and Vertex B(-2,2) and Centroid = (-1,-2)

=> 1=2+6+x3

=> x+4=1×3=3

=> x=34=7

Similarly, => 2=4+2+y3

=> y2=2×3=6

=> y=6+2=4

Coordinates of vertex C = (-7,-4)

=> Ans – (A)

12) Answer (B)

Let line l perpendicularly bisects line joining  A(2,-6) and B(4,0) at C, thus C is the mid point of AB.

=> Coordinates of C = (2+42,6+02)

= (62,62)=(3,3)

Now, slope of AB = y2y1x2x1=(0+6)(42)

= 62=3

Let slope of line l=m

Product of slopes of two perpendicular lines = -1

=> m×3=1

=> m=13

Equation of a line passing through point (x1,y1) and having slope m is (yy1)=m(xx1)

Equation of line l

=> (y+3)=13(x3)

=> 3y+9=x+3

=> x+3y=39=6

=> Ans – (B)

13) Answer (A)

Using section formula, the coordinates of point that divides line joining A = (x1,y1) and B = (x2,y2) in the ratio a : b

= (ax2+bx1a+b,ay2+by1a+b)

Let the ratio in which the segment joining (12,1) and (3,4) divided by the y-axis = k : 1

Since, the line segment is divided by y-axis, thus x coordinate of the point will be zero, let the point of intersection = (0,y)

Now, point P (0,y) divides (12,1) and (3,4) in ratio = k : 1

=> 0=(3×k)+(12×1)k+1

=> 3k+12=0

=> k=123=4

Line segment joining (12,­1) and (­3,4) is divided by the Y ­axis in the ratio = 4 : 1 externally

=> Ans – (A)

14) Answer (B)

Slope of line passing through (x1,y1) and (x2,y2) is y2y1x2x1

=> Slope of line passing through (1,2) and (3,0) = 0231=22=1

Slope of line passing through (4,3) and (y,0) = 03y4=3(y4)

Also, slopes of parallel lines are equal.

=> 3y4=1

=> y4=3

=> y=3+4=7

=> Ans – (B)

15) Answer (A)

Slope of line passing through (x1,y1) and (x2,y2) is y2y1x2x1

=> Slope of line passing through (3,1) and (8,2) = 2183=15

Let slope of line perpendicular to it = m

Also, product of slopes of two perpendicular lines = -1

=> m×15=1

=> m=5

=> Ans – (A)

Get 200 SSC mocks for just Rs. 249. Enroll here

SSC Free Previous Papers App

We hope this Physics Questions for SSC CGL Exam preparation is so helpful to you.

LEAVE A REPLY

Please enter your comment!
Please enter your name here