In the third quadrant, sin and cos are negative.
Given : $$sin \theta = \frac{3}{5}$$
=> $$cos \theta = \sqrt{1 - sin^2 \theta} = \sqrt{1 - (\frac{3}{5})^2}$$
=> $$cos \theta = \sqrt{\frac{16}{25}} = - \sqrt{\frac{4}{5}}$$
Also, $$cos 2x = 2 cos^2 x - 1$$
Replacing $$x$$ by $$\frac{\theta}{2}$$
=> $$cos \theta = 2 cos^2 \frac{\theta}{2} - 1$$
$$\therefore cos \frac{\theta}{2} = \sqrt{\frac{cos \theta + 1}{2}}$$
= $$\sqrt{\frac{1 - \frac{4}{5}}{2}} = \sqrt{\frac{1}{10}}$$
$$\because \theta$$ lies in third quadrant, => $$cos \frac{\theta}{2} = - \frac{1}{\sqrt{10}}$$
Create a FREE account and get: