Expression : $$\sqrt[3]{x^6}\times\sqrt[3]{x^{-12}} \times x^{-3} \times \sqrt[3]{x^{9}}$$
We know that, $$\sqrt{x} = x^{\frac{1}{2}}$$
= $$(x)^{\frac{6}{3}} \times (x)^{\frac{-12}{3}} \times \frac{1}{x^3} \times (x)^{\frac{9}{3}}$$
= $$(x)^2 \times (x)^{-4} \times \frac{1}{x^3} \times (x)^3$$
= $$(x)^{2 - 4} \times 1$$
= $$(x)^{-2} = \frac{1}{x^2}$$
Create a FREE account and get: