Trigonometry Questions for SSC CHSL Exam PDF:
SSC CHSL Trignometry Questions download PDF based on previous year question paper of SSC CHSL exam. 25 Very important Trignometry questions for SSC CHSL Exam.
Download Trigonometry Questions for SSC CHSL Exam PDF
Get 200 SSC mocks for just Rs. 249. Enroll here
Take a free mock test for SSC CHSL
Download SSC CHSL Previous Papers
More SSC CHSL Important Questions and Answers PDF
Question 1:Â If $\sin x+\frac{1}{\sin x}=2$ then $\cos ^5 x+\cot ^{5} x=?$
a)Â 0
b)Â -1
c)Â 1
d)Â 2
Question 2: If $cos^2x + (1 + sinx)^2 = 3$, then find the value of cosec x + sin(60+x), where 0º < x < 90º?
a)Â 3
b)Â 2
c)Â $2\frac{1}{2}$
d)Â $3\frac{1}{2}$
Question 3:Â If $x$ and $y$ are acute angles such that their sum is less than $90^{\circ}$ . If $\cos(2x-20^{\circ})=\sin(2y+20^{\circ})$ , then the value of $\tan(x+y)$ is
a)Â $0$
b)Â $1$
c)Â $\frac{1}{\sqrt{3}}$
d)Â $\sqrt{3}$
Question 4:Â If x is an acute angle such that
Tan (4x – 50°) = Cot ( 50° – x), then the value of x would be?
a)Â 60
b)Â 45
c)Â 50
d)Â 30
Question 5:Â If cosec 9x= sec 9x (0 <x<10), what is the value of x?
a) 9°
b) 3°
c) 5°
d) 6°
Question 6:Â If $\sin x+1=\frac{2}{\sin x} $ then $\cos ^3 x+ \mathrm{cosec} ^{-3} x=?$
a)Â 0
b)Â -1
c)Â 1
d)Â 2
Question 7:Â If $\frac{sin2x}{sinx} + cos2x + sin^2x = 0$, find the value of x, if $0 \leq x \leq 180$.
a) 45º
b) 90º
c) 180º
d)Â More than one value is possible
Question 8:Â If $\frac{sin^2 \Theta}{4} = \frac{cos^2 \Theta}{9}$. Find the value of $tan^2 \Theta – cot^2 \Theta$.
a)Â 1/6
b)Â 13/27
c)Â 1/18
d)Â None of these
Question 9: If $\sec^4 x-\tan^4 x=4+4sin^2 x$ then $ x=?$ (0<x<90°)
a) 45°
b) 30°
c) 75°
d) 60°
Question 10:Â Simplify the expression $\sqrt{\frac{1+cosx}{1-cosx}}$.
a)Â sec x + tan x
b)Â sin x
c)Â cosec x + cot x
d)Â cos x
Question 11:Â If $sinx = 1 – cos x$, find the value of cos 2x.
a)Â 0
b)Â 1
c)Â $\frac{1}{2}$
d)Â $\frac{\sqrt{3}}{2}$
Question 12:Â If it is known that
$\tan\theta + \cot\theta = 2$, then find the value of $\tan^3\theta + \cot^3\theta$
a)Â $\sqrt{5}$
b)Â 2
c)Â $1 + \sqrt{3}$
d)Â $2 + \sqrt{3}$
Question 13:Â If $\sin x+\frac{1}{\sin x}=\frac{5}{2}$ then $\tan {x}+\cot {x}=?$
a)Â 0
b)Â $\frac{2}{\sqrt3}$
c)Â $\frac{4}{\sqrt3}$
d)Â $\frac{\sqrt3}{2}$
Question 14:Â If $\cos x+\frac{1}{\cos x}=2$ then $\sin ^{5} x+\sec ^{-5} x=?$
a)Â -1
b)Â 0
c)Â 1
d)Â 2
Question 15:Â If $\tan x+\frac{1}{\tan x}=2$ then $\sin ^{5} x+\cos ^{5} x=?$
a)Â $\frac{1}{4\sqrt{2}}$
b)Â $\frac{1}{2\sqrt{2}}$
c)Â $\frac{1}{\sqrt{2}}$
d)Â $\frac{1}{8\sqrt{2}}$
FREE SSC MATERIAL – 18000 FREE QUESTIONS
Question 16: The maximum value of sin θ + cos θ is
a)Â $1$
b)Â $\sqrt{2}$
c)Â $2$
d)Â $3$
Question 17:Â If $sin \Theta + cosec \Theta = 5$, Find the value of $sin^3 \Theta + cosec ^3 \Theta $.
a)Â 96
b)Â 115
c)Â 110
d)Â None of these
Question 18:Â The value of $cos^2 30^{\circ} + sin^2 60^{\circ} + tan^2 45^{\circ} + sec^2 60^{\circ} + cos0^{\circ}$ is
a)Â $4\frac{1}{2}$
b)Â $5\frac{1}{2}$
c)Â $6\frac{1}{2}$
d)Â $7\frac{1}{2}$
Question 19:Â If $cos x + cos^{2} x = 1,$ then $sin^{8} x + 2 sin^{6} x + sin^{4}$ x is equal to
a)Â 0
b)Â 3
c)Â 2
d)Â 1
Question 20: If $x= p$ $cosec θ$ and $y= q$ $cot θ$, then the value of $\frac{x^2}{p^2}-\frac{y^2}{q^2}$ is
a) $sin^{2} θ$
b) $tanθ$
c)Â $1$
d)Â $0$
DOWNLOAD APP TO ACESSES DIRECTLY ON MOBILE
Question 21: Find the value of tan 4° tan 43° tan 47 tan 86°
a)Â $\frac{2}{3}$
b)Â $1$
c)Â $\frac{1}{2}$
d)Â $2$
Question 22: If $x cosθ – sinθ = 1,$ then $x^{2} – (1 +x^{2}) sinθ$ equals
a)Â 2
b)Â 1
c)Â – 1
d)Â 0
Question 23: If $sin θ + sin^{2} θ = 1$ then $cos^2 θ + cos^4 θ$ is equal to
a)Â None
b)Â 1
c) $Sin θ /cos^{2} θ$
d) $cos^{2}θ / Sin θ$
Question 24: The value of tan1°tan2°tan3° ……………tan89° is
a)Â 1
b)Â -1
c)Â 0
d)Â None of the options
Question 25: If 0° ≤ A ≤ 90°, the simplified form of the given expression sin A cos A (tan A – cot A) is
a)Â 1
b)Â 1 – 2 $sin^2$ A
c)Â 2 $sin^2$ A – 1
d)Â 1 – cos A
FREE MOCK TEST FOR SSC STENOGRAPHER
Answers & Solutions:
1) Answer (A)
$\sin x+\frac{1}{\sin x}=2$
=>$\sin^2 x+1=2\sin x$
=>$(\sin x-1)^2=0$
=>$\sin x = 1$
=>$\cos x = 0$
The given expression would be,
$\cos ^5 x+\cot ^{5} x$
$\cos ^5 x+\frac{\cos^5 x}{\sin^5 x}$
$=0$
2) Answer (A)
$cos^2x + (1 + sinx)^2 = 3$
=> $cos^2x + 1 + sin^2x + 2sinx = 3$ (Since $ cos^2x + sin^2x = 1$)
=> $2 sin x = 1$ or sin x = ½ which means x=30 degrees [Solution in the first quadrant]
=> cosec x = 1/sin x = 2 and sin (60+x) = sin 90 = 1
=> The value of the expression is 2+1 = 3
3) Answer (B)
Given that , $x+y<90^{\circ} \dots (1)$
$\implies\cos(2x-20^{\circ})=\cos(90^{\circ}-(2y+20^{\circ}))$
Using the given property in $(1)$
$\implies 2x-20^{\circ}=70^{\circ}-2y$
$\implies 2x+2y=90^{\circ}$
$\implies x+y=45^{\circ}$
$\implies \tan(x+y)=1 $
Hence , the correct option is B
4) Answer (D)
We know that Tan ( 90 – x) = Cot x and Cot (90 – x) = Tanx
So 4x – 50 = 90 – y
Then 50 – x will be y
=> y = 50 – x
x + y = 50
Moreover,
90 – y = 4x – 50
=> 4x + y = 140
Subtracting the two equations, we get
3x = 90
=> x = 30
Hence the correct answer is option D.
5) Answer (C)
If cosec 9x= sec 9x,
Then $\sin 9x=\cos 9x$
In the first quadrant cos and sin are equal when $9x =45$°
Hence, x = 5°
6) Answer (C)
$\sin x+1=\frac{2}{\sin x} $
=>$\sin^2 x+\sin x=2$
=>$(\sin x-1)(\sin x+2)=0$
As $\sin x$ can only take values between -1 and 1,
=>$\sin x = 1$
=>$\cos x = 0$
The given expression would be,
$\cos ^3 x+ \mathrm{cosec}^{-3} x$
$\cos ^3 x + \sin^3 x$
$=1$
7) Answer (B)
$\frac{sin2x}{sinx} + cos2x + sin^2x = 0$
We know that $sin2x = 2 sinx cosx$ and $cos2x=cos^2x-sin^2x$
=> $2cosx + cos^2x = 0$
=> cos x =0 or cos x =2
Now, cos x =2 is not possible.
=> cos x = 0
In the range, $0 \leq x \leq 180$, cos x =0 at only 90º
Thus, B is the correct answer.
8) Answer (D)
$\frac{sin^2 \Theta}{4} = \frac{cos^2 \Theta}{9}$
==> $\frac{sin^2 \Theta}{cos^2 \Theta}$ = $\frac{4}{9}$
==> $tan^2 \Theta = \frac{4}{9}$
==> $cot^2 \Theta = \frac{9}{4}$
==> $tan^2 \Theta – cot^2 \Theta$ = 4/9 – 9/4 = -65/36
Since there is no such option, the correct option to choose is D.
9) Answer (D)
$\sec^4 x-\tan^4 x=4+4sin^2 x$
$(sec^2 x-\tan^2 x)( sec^2 x+\tan^2 x)=4+4sin^2 x$
$(1)( sec^2 x+\tan^2 x)=4+4sin^2 x$ (as $sec^2 x-\tan^2 x = 1$)
$\frac{(1+ sin^2 x)}{cos^2 x} = 4(1+sin^2 x) $
$cos^2 x = \frac{1}{4}$
$ cos x = \frac{1}{2} or \frac{-1}{2}$
Here, $cosx$ cannot be negative as (0<x<90°)
Hence, $ cos x = \frac{1}{2}$ and $ x = 60$°
10) Answer (C)
$\sqrt{\frac{1+cosx}{1-cosx}}$
Multiplying the numerator and denominator by 1+cosx, we get
$\sqrt{\frac{(1+cosx)^2}{(1-cosx)(1+cosx)}}$
=> $\sqrt{\frac{(1+cosx)^2}{(1- cos^2x}}$
=> $\frac{1+cosx}{sinx}$ = cosecx + cotx$
11) Answer (B)
$sinx = 1 – cos x$
=> $sinx + cos x = 1 $
Squaring both sides we get,
$sin^2x + cos^2x + 2 sinx cos x = 1$
=> $1 + sin2x = 1$
=> sin 2x = 0 or x=0
=> cos 2x = 1
12) Answer (B)
$\tan\theta + \cot\theta = 2$
Cubing both sides we get
$\tan^3\theta + \cot^3\theta + 3\tan\theta*\cot\theta(\tan\theta+\cot\theta) = 8$
=> $\tan^3\theta + \cot^3\theta + 3*2 = 8$
=> $\tan^3\theta + \cot^3\theta = 2$
13) Answer (C)
$\sin x+\frac{1}{\sin x}=\frac{5}{2}$
=>$2\sin^2 x-5\sin x+2=0$
=>$(\sin x-1/2)(\sin x-2)=0$
=>$\sin x = 1/2$
=>$x=30$ degrees
=>$\tan x = \frac{1}{\sqrt3}$
=>$\cot x = \sqrt3$
The given expression would be,
$\tan {x}+\cot {x}$
$=\frac{1}{\sqrt3}+\sqrt3$
$=\frac{4}{\sqrt3}$
14) Answer (C)
$\cos x+\frac{1}{\cos x}=2$
=>$\cos^2 x+1=2\cos x$
=>$(\cos x-1)^2=0$
=>$\cos x = 1$
=>$\sin x = 0$
The given expression is,
$\sin ^5 x+\sec ^{-5} x$
$= \sin ^5 x+\frac{1}{\cos^5 x}$
$=0+1 = 1$
15) Answer (B)
$\tan x+\frac{1}{\tan x}=2$
=>$\tan^2 x+1=2\tan x$
=>$(\tan x-1)^2=0$
=>$\tan x = 1$
=>$\sin x = \frac{1}{\sqrt{2}}$
=>$\cos x = \frac{1}{\sqrt{2}}$
The given expression would be,
$ \sin ^5 x+\cos ^{5} x$
$ \sin ^5 x+\cos^5 {x}$
$=\frac{1}{4\sqrt{2}}+\frac{1}{4\sqrt{2}} = \frac{1}{2\sqrt{2}}$
16) Answer (B)
for asin θ + bcos θ + c,
maximum value = $c+\sqrt{a^{2}+b^{2}}$
minimum value = $c-\sqrt{a^{2}+b^{2}}$
for sin θ + cos θ , a = 1, b = 1, c = 0
maximum value = $c+\sqrt{a^{2}+b^{2}}=0+\sqrt{1^{2}+1^{2}}=\sqrt{2}$
so the answer is option B.
17) Answer (C)
$sin \Theta + cosec \Theta = 5$
==> $(sin \Theta + cosec \Theta)^3 = 5^3$
==>$ sin^3 \Theta + cosec ^3 \Theta + 3*sin \Theta * cosec \Theta (sin \Theta + cosec \Theta)$ = 125
==> $sin^3 \Theta + cosec ^3 \Theta + 3*5 = 125$
==> $sin^3 \Theta + cosec ^3 \Theta $ = 110.
18) Answer (D)
Substituting values of angles, we get,
3/4 + 3/4+ 1 + 4 + 1 = 7.5. Option D is the right answer.
19) Answer (D)
$cos x + cos^2 x = 1$
=> $cos x = 1 – cos^2 x$
=> $cos x = sin^2 x$
$\therefore$ $sin^{8} x + 2 sin^{6} x + sin^{4} x$
= $(sin^4 x + sin^2 x)^2$
= $((cos x)^2 + sin^2 x)^2$
= $(cos^2 x + sin^2 x)^2 = 1$
20) Answer (C)
$x= p$ $cosec θ$
=> $cosec\theta$ = $\frac{x}{p}$
Also, $y= q$ $cot θ$
=> $cot\theta$ = $\frac{y}{q}$
$\because$ $cosec^2\theta-cot^2\theta$ = 1
=> $\frac{x^2}{p^2}$ – $\frac{y^2}{q^2}$ = 1
21) Answer (B)
Expression : tan 4° tan 43° tan 47 tan 86°
$\because$ $tan(90-\theta) = cot\theta$
=> $tan 4^{\circ} = tan(90^{\circ}-86^{\circ}) = cot 86^{\circ}$
Similarly, $tan 43^{\circ} = cot 47^{\circ}$
=> $(cot 86^{\circ} \times tan 86^{\circ}) * (tan 47^{\circ} \times cot 47^{\circ})$
Using, $tan\theta cot\theta$ = 1
=> 1*1 = 1
22) Answer (B)
Expression : $x cosθ – sinθ = 1$
=> $x = \frac{1}{cos\theta} + \frac{sin\theta}{cos\theta}$
=> $x = sec\theta + tan\theta$ ————–Eqn(1)
$\because$ $sec^2\theta – tan^2\theta = 1$
=> $(sec\theta + tan\theta)(sec\theta – tan\theta) = 1$
=> $(sec\theta – tan\theta) = \frac{1}{x}$ ————–Eqn(2)
Adding eqns(1)&(2)
=> $2sec\theta = x + \frac{1}{x} = \frac{x^2 + 1}{x}$
=> $sec\theta = \frac{x^2 + 1}{2x}$
Subtracting eqn(2) from (1)
=> $2tan\theta = x – \frac{1}{x} = \frac{x^2 – 1}{x}$
=> $tan\theta = \frac{x^2 – 1}{2x}$
We know that, $sin\theta = \frac{tan\theta}{sec\theta}$
=> $sin\theta = \frac{x^2 – 1}{2x} * \frac{2x}{x^2 + 1}
=> $sin\theta = \frac{x^2 – 1}{x^2 + 1}$
To find : $x^2 – (1 + x^2) sinθ $
= $x^2 – (1 + x^2) * \frac{x^2 – 1}{x^2 + 1}$
= $x^2 – (x^2 – 1)$
= 1
23) Answer (B)
Expression : $sin\theta + sin^2\theta = 1$
=> $sin\theta = 1 – sin^2\theta$
=> $sin\theta = cos^2\theta$
To find : $cos^2\theta + cos^4\theta$
= $cos^2\theta + (cos^2\theta)^2$
= $cos^2\theta + sin^2\theta$
= 1
24) Answer (A)
Expression : tan1°tan2°tan3° ……………tan88°tan89°
$\because$ $tan(90^{\circ}-\theta) = cot\theta$
=> tan 89° = tan(90°-1) = cot 1°
Similarly, tan 88° = cot 2° and so on till tan 46° = cot 44°
=> (tan1°tan2°tan3°…….tan45°……cot3°cot2°cot1°)
Using, $tan\theta cot\theta$ = 1 and $tan45^{\circ}$ = 1
=> 1*1 = 1
25) Answer (C)
Expression : $sin A cos A (tan A – cot A)$
= $sin A cos A (\frac{sin A}{cos A} – \frac{cos A}{sin A})$
= $sin A cos A (\frac{sin^2 A – cos^2 A}{sin A cos A})$
= $sin^2 A – cos^2 A$
= $sin^2 A – (1 – sin^2 A)$
= $2sin^2 A – 1$
FREE SSC CHSL MOCK TEST SERIES
We hope this SSC CHSL Trignometry Questions will be highly useful for your preparation.