SSC CGL Trigonometry Questions:
Download Top-20 Trigonometry questions for SSC CGL exam 2020. Most important Trigonometry questions based on asked questions in previous exam papers for SSC CGL.
Download Top-20 SSC CGL Trigonometry Questions
Get 125 SSC CGL Mocks – Just Rs. 199
Take a free SSC CGL Tier-1 mock test
Download SSC CGL Tier-1 Previous Papers PDF
Question 1: $5tan\theta = 4$, then the value of $(\frac{5sin\theta – 3cos\theta}{5sin\theta + 3cos\theta})$ is
a)Â $\frac{1}{7}$
b)Â $\frac{2}{7}$
c)Â $\frac{5}{7}$
d)Â $\frac{2}{5}$
Question 2:Â The least value of $(4sec^2\theta + 9cosec^2\theta)$ is
a)Â 1
b)Â 19
c)Â 25
d)Â 7
Question 3:Â If $x=cosec\theta-sin\theta$ and $y=sec\theta-cos\theta$, then the value of $x2y2(x2 + y2 + 3)$
a)Â 0
b)Â 1
c)Â 2
d)Â 3
Question 4:Â If $ 0 \leq \theta \leq \frac{\pi}{2}$, $2ycos\theta=sin\theta$ and $\frac{x}{2cosec\theta}=y$, then the value of $x^2-4y^2$Â is
a)Â 1
b)Â 2
c)Â 3
d)Â 4
Question 5:Â The value of $\frac{1}{cosec\theta – cot\theta} – \frac{1}{sin\theta}$
a)Â $cot\theta$
b)Â $cosec\theta$
c)Â $tan\theta$
d)Â $1$
Question 6: If $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$, then $\cos\theta – \sin\theta$ is
a)Â -$\sqrt{2}\cos\theta$
b)Â -$\sqrt{2}\sin\theta$
c)Â $\sqrt{2}\sin\theta$
d)Â $\sqrt{2}\tan\theta$
Question 7:Â If $cos^4\theta-sin^4\theta=\frac{2}{3}$, then the value of $1-2sin^2\theta$ is,
a)Â 0
b)Â $\frac{2}{3}$
c)Â $\frac{1}{3}$
d)Â $\frac{4}{3}$
Question 8:Â The value of $\frac{1}{1 + tan^2\theta}$ + $\frac{1}{1 + cot^2\theta}$ is
a)Â 1
b)Â 2
c)Â $\frac{1}{2}$
d)Â $\frac{1}{4}$
Question 9:Â Maximum value of $(2sin\theta+3 cos\theta)$ is
a)Â 2
b)Â $\sqrt{13}$
c)Â $\sqrt{15}$
d)Â 1
Question 10:Â The value of $cos^2 30^{\circ} + sin^2 60^{\circ} + tan^2 45^{\circ} + sec^2 60^{\circ} + cos0^{\circ}$ is
a)Â $4\frac{1}{2}$
b)Â $5\frac{1}{2}$
c)Â $6\frac{1}{2}$
d)Â $7\frac{1}{2}$
Join Exam Preparation Telegram Group
Question 11:Â If $cos x + cos^{2} x = 1,$ then $sin^{8} x + 2 sin^{6} x + sin^{4}$ x is equal to
a)Â 0
b)Â 3
c)Â 2
d)Â 1
Question 12: From an aeroplane just over a straight road, the angles of depression of two consecutive kilometre stones situated at opposite sides of the aeroplane were found to be 60° and 30° respectively. The height (in km) of the aeroplane from the road at that instant was (Given √3 = 1.732)
a)Â 0.433
b)Â 8.66
c)Â 4.33
d)Â 0.866
Question 13: In ΔABC, ∠C = 90° and AB = c, BC = a, CA = b; then the value of (cosec B – cos A) is
a)Â $\frac{c^2}{ab}$
b)Â $\frac{b^2}{ca}$
c)Â $\frac{a^2}{bc}$
d)Â $\frac{bc}{a^{2}}$
Question 14: The maximum value of sin θ + cos θ is
a)Â $1$
b)Â $\sqrt{2}$
c)Â $2$
d)Â $3$
Question 15: Find the value of tan 4° tan 43° tan 47 tan 86°
a)Â $\frac{2}{3}$
b)Â $1$
c)Â $\frac{1}{2}$
d)Â $2$
Get 125 SSC CGL Mocks – Just Rs. 199
Question 16: The value of tan1°tan2°tan3° ……………tan89° is
a)Â 1
b)Â -1
c)Â 0
d)Â None of the options
Question 17: If θ is an acute angle and $\tan^2\theta+\frac{1}{\tan^2\theta}=2$ then the value of θ is :
a) 60°
b) 45°
c) 15°
d) 30°
Question 18: If tan θ + cot θ = 5, then $tan^2 θ + cot^2 θ$ is
a)Â 23
b)Â 25
c)Â 26
d)Â 24
Question 19: A person of height 6ft. wants to pluck a fruit which is on a 26/3 ft. high tree. If the person is standing 8/√3 ft. away from the base of the tree, then at what angle should he throw a stone so that it hits the fruit ?
a) 75°
b) 30°
c) 45°
d) 60°
Question 20: The angle of elevation of a tower from a distance of 100 metre from its foot is 30°. Then the height of the tower is
a)Â $50\sqrt{3}$ metre
b)Â $100\sqrt{3}$ metre
c)Â $\frac{50}{\sqrt{3}}$ metre
d)Â $\frac{100}{\sqrt{3}}$ metre
More SSC CGL Important Questions and Answers PDF
Answers & Solutions:
1) Answer (A)
Taking $cos\theta$ outside in numerator and in denominator and making $tan\theta$
hence eq will be  $(\frac{5tan\theta – 3}{5tan\theta + 3})$
As it is given that $5tan\theta$ = 4
after putting values and solving we will get the equation reduced to 1/7.
2) Answer (A)
$4sec^2\theta+9cosec^2\theta$
or $4+4tan^2\theta+9+9cot^2\theta$
or $13+4tan^2\theta+9cot^2\theta$
or $ 13+4tan^2\theta+\frac{9}{tan^2\theta} $
or $ Â 13-12+(2tan\theta+\frac{3}{tan\theta})^2 $ Â Â (eq. (1) )
or now above expression to be minimum, equation $(2tan\theta+\frac{3}{tan\theta})^2$ should be minimum.
So applying $A.M.\geq G.M. $
$\frac{(2tan\theta +\frac{3}{tan\theta})}{2} \geq \sqrt{6}$
or ${(2tan\theta+\frac{3}{tan\theta})}=2\sqrt{6}$ ( for value to be minimum)
After putting above value in eq.(1) , we will get least value of expression as 25.
3) Answer (B)
$x=cosec\theta – sin\theta=\frac{cos^2\theta}{sin\theta}=cot\theta cos\theta$
Similarly $y=tan\theta sin\theta$
$xy=sin\theta cos\theta$
$x^2+y^2+3=(sec^2\theta +cosec^2\theta )$
Now putting above values in given equation, and after solving it will be reduced to 1
4) Answer (A)
$2y=tan\theta$
$x=2ycosec\theta$
Hence value of $x^2 – 4y^2 $ = $4y^2(cosec^2\theta – 1)$
or $tan^2\theta cot^2\theta$ = 1
5) Answer (A)
$\frac{sin\theta}{1-cos\theta} – \frac{1}{sin\theta}$
or $\frac{cos\theta – cos^2\theta}{(1-cos\theta)sin\theta}$ = $cot\theta$
6) Answer (C)
$\sin^2 \theta + \cos^2 \theta = 1$
So, $\sin^2 \theta + \cos^2 \theta + 2\sin\theta * \cos \theta = 2 \cos^2\theta$
Hence, $\cos^2 \theta – \sin^2 \theta = 2 \sin\theta*\cos\theta$
So, $\cos\theta – \sin\theta = \sqrt{2}\sin\theta$
7) Answer (B)
$cos^4\theta-sin^4\theta=(cos^2\theta-sin^2\theta)(cos^2\theta+sin^2\theta)=cos^2\theta-sin^2\theta=\frac{2}{3}$
$cos^2\theta-sin^2\theta =1-2sin^2\theta=\frac{2}{3}$
8) Answer (A)
$1 + \tan ^2 \theta = \sec ^2 \theta$
$1 + \cot ^2 \theta = \csc ^2 \theta$
So, the given fraction becomes,
$\frac{1}{\sec ^2 \theta} + \frac{1}{\csc ^2 \theta} = \sin^2\theta + \cos^2 \theta = 1$
9) Answer (B)
$\because$ Maximum Value of $a\sin{\theta}+b\cos{\theta}=\sqrt{a^{2}+b^{2}}$
$\therefore$ Maximum Value of $2\sin{\theta}+3\cos{\theta}=\sqrt{2^{2}+3^{2}}$
$=\sqrt{13}$
Hence, Correct option is B.
10) Answer (D)
Substituting values of angles, we get,
3/4 + 3/4+ 1 + 4 + 1 = 7.5. Option D is the right answer.
11) Answer (D)
$cos x + cos^2 x = 1$
=> $cos x = 1 – cos^2 x$
=> $cos x = sin^2 x$
$\therefore$ $sin^{8} x + 2 sin^{6} x + sin^{4} x$
= $(sin^4 x + sin^2 x)^2$
= $((cos x)^2 + sin^2 x)^2$
= $(cos^2 x + sin^2 x)^2 = 1$
12) Answer (D)
OC = height of plane = $h$
$\angle$OAC = $\angle$DOA = 60°
$\angle$OBC = $\angle$BOE = 30°
AB = 2 and let AC = $x$
=> BC = $(2-x)$
From, $\triangle$OAC
$tan60^{\circ} = \frac{OC}{AC}$
=> $\sqrt{3} = \frac{h}{x}$
=> $x = \frac{h}{\sqrt{3}}$ ————Eqn(1)
From, $\triangle$OBC
$tan30^{\circ} = \frac{OC}{BC}$
=> $\frac{1}{\sqrt{3}} = \frac{h}{2-x}$
=> $\sqrt{3}h = 2 – \frac{h}{\sqrt{3}}$ [From eqn(1)]
=> $\frac{3h+h}{\sqrt{3}} = 2$
=> $h = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$
= $\frac{1.732}{2}$ = 0.866
13) Answer (C)
In $\triangle$$ABC, AB^2 = AC^2 + BC^2$
=> $c^2 = a^2 + b^2 => c^2 – b^2 = a^2$
$cosecB = \frac{AB}{BC} = \frac{c}{b}$
$cosA = \frac{AC}{AB} = \frac{b}{c}$
$\therefore cosecB – cosA = \frac{c}{b} – \frac{b}{c}$
= $\frac{c^2-b^2}{bc} = \frac{a^2}{bc}$
14) Answer (B)
for  asin θ + bcos θ + c,
maximum value = $c+\sqrt{a^{2}+b^{2}}$
minimum value =Â Â $c-\sqrt{a^{2}+b^{2}}$
for  sin θ + cos θ , a = 1, b = 1, c = 0
maximum value = $c+\sqrt{a^{2}+b^{2}}=0+\sqrt{1^{2}+1^{2}}=\sqrt{2}$
so the answer is option B.
15) Answer (B)
Expression : tan 4° tan 43° tan 47 tan 86°
$\because$ $tan(90-\theta) = cot\theta$
=> $tan 4^{\circ} = tan(90^{\circ}-86^{\circ}) = cot 86^{\circ}$
Similarly, $tan 43^{\circ} = cot 47^{\circ}$
=> $(cot 86^{\circ} \times tan 86^{\circ}) * (tan 47^{\circ} \times cot 47^{\circ})$
Using, $tan\theta cot\theta$ = 1
=> 1*1 = 1
Get 125 SSC CGL Mocks – Just Rs. 199
18000+ Questions – Free SSC Study Material
16) Answer (A)
Expression : tan1°tan2°tan3° ……………tan88°tan89°
$\because$ $tan(90^{\circ}-\theta) = cot\theta$
=> tan 89° = tan(90°-1) = cot 1°
Similarly, tan 88° = cot 2° and so on till tan 46° = cot 44°
=> (tan1°tan2°tan3°…….tan45°……cot3°cot2°cot1°)
Using, $tan\theta cot\theta$ = 1 and $tan45^{\circ}$ = 1
=> 1*1 = 1
17) Answer (B)
Expression : $\tan^2\theta+\frac{1}{\tan^2\theta}=2$
=> $(tan\theta + \frac{1}{tan\theta})^2 – 2 = 2$
=> $(tan\theta + \frac{1}{tan\theta})^2 = 4$
=> $tan\theta + \frac{1}{tan\theta} = 2$
[It can’t be -2 as $\theta$ is in 1st quadrant, and $tan\theta$ is positive in 1st quadrant.]
=> $tan^2\theta + 1 = 2tan\theta$
=> $(tan\theta – 1)^2 = 0$
=> $tan\theta = 1$
=> $\theta = 45^{\circ}$
18) Answer (A)
Expression : $tan\theta + cot\theta = 5$
Squaring both sides, we get :
=> $tan^2\theta + cot^2\theta + 2tan\theta cot\theta = 25$
We know that, $tan\theta cot\theta = 1$
=> $tan^2\theta + cot^2\theta = 25-2 = 23$
19) Answer (B)
Height of person = CD = 6 ft
Height of tree = AB = $\frac{26}{3}$ ft
Distance between them = BD = $\frac{8}{\sqrt{3}}$ ft
To find : $\angle$ACE = $\theta$ = ?
Solution : AE = AB – BE = $\frac{26}{3}$ – 6
=> AE = $\frac{8}{3} ft$
and BD = CE = $\frac{8}{\sqrt{3}}$ ft
Now, in $\triangle$AEC
=> $tan\theta$ = $\frac{AE}{CE}$
=> $tan\theta$ = $\frac{\frac{8}{3}}{\frac{8}{\sqrt{3}}}$
=> $tan\theta$ = $\frac{1}{\sqrt{3}}$
=> $\theta$ = 30°
20) Answer (D)
Height of tower = AB
In $\triangle$ABC
=> $tan\theta = \frac{AB}{BC}$
=> $tan30^{\circ} = \frac{AB}{100}$
=> $\frac{1}{\sqrt{3}} = \frac{AB}{100}$
=> $AB = \frac{100}{\sqrt{3}}$
Join Exam Preparation Telegram Group