Simplification Questions for Railway Exams PDF
Download Simplification Questions for Railway Exams PDF. Top 15 questions based on asked questions in previous exam papers very important for the Railway NTPC exam.
Download Simplification Questions for Railway Exams PDF
Take a free mock test for RRB NTPC
Download RRB NTPC Previous Papers PDF
Question 1: Simplify : $5 + 4 \times 5^2 + 4 \times 5^3 + 4 \times 5^4 + 4 \times 5^5$
a) $5^8$
b) $5^4$
c) $5^6$
d) $5^2$
Question 2: simplify $\sqrt{25+10\sqrt{6}}+ \sqrt{25-10\sqrt{6}}$?
a) $2\sqrt{15}$
b) $2\sqrt{5}$
c) $\sqrt{50}$
d) $\sqrt{55}$
Question 3: Simplify: $6 \div [2(1 + 2)]$
a) 3
b) 9
c) 1
d) 2
Question 4: $(8-(28-53))\div(-4\times5-(-9))=?$
a) 11
b) -3
c) 3
d) -11
Question 5: $45-[38-(80\div4-(8-12\div3)\div4)]=?$
a) 25
b) 27
c) 26
d) 28
RRB NTPC Previous Papers [Download PDF]
Question 6: The value of $ 14 \div $ { ( 5 of 2 – 3 ) } $ \times 4 ( 7 – 2 ) $ is :
a) 44
b) 40
c) $ \frac{1}{10} $
d) $ \frac{14}{19} $
Question 7: $ 4 + \frac{1}{6} \times $ [ { $ – 12 \times ( 24 – 13 – 3) $ } $ \div ( 20 – 4) $ ] = ?
a) 4
b) 6
c) 5
d) 3
Question 8: $384 \div 2^5 \times 3 + 8 = ?$
a) 12
b) 132
c) 3
d) 44
Question 9: $\frac{3}{4} + \left\{\frac{3}{4} + \frac{3}{4} \div (\frac{3}{4} + \frac{3}{4})\right\} = ?$
a) $\frac{3}{4}$
b) 1
c) 2
d) $2\frac{3}{4}$
Question 10: The simplest form of $\frac{391}{667}$ is
a) $\frac{23}{31}$
b) $\frac{19}{23}$
c) $\frac{15}{19}$
d) $\frac{17}{29}$
DOWNLOAD APP FOR RRB FREE MOCKS
Question 11: $\frac{9x^{2}-24xy+16y^{2}}{3x-4y}$ = ?
a) 3x+4y
b) 3x-4y
c) 4x+3y
d) 4x-3y
Question 12: Evaluate :- $\frac{16 \times2^{n+1 }-4\times2^{n}}{16\times 2^{n+2}-2\times2^{n+2}}$
a) $\frac{1}{2}$
b) $0$
c) $4$
d) $\frac{1}{3}$
Question 13: $ (1-\frac{1}{2}) (1-\frac{1}{3}) (1-\frac{1}{4}) …..(1-\frac{1}{40}) = ?$
a) $ \frac{1}{40} $
b) $ \frac{1}{20} $
c) Countless
d) Zero
Question 14: Evaluate: $\left[\frac{\sqrt{3} + 1}{\sqrt{3} – 1}\right]^2 + \left[\frac{\sqrt{3} – 1}{\sqrt{3} + 1}\right]^2$
a) 16
b) 12
c) 14
d) 24
Question 15: Simplify: $\frac{1\frac{1}{4} \div 1\frac{1}{2}}{\frac{1}{15} + 1- \frac{9}{10}}$
a) 2
b) 5
c) 3
d) 4
Download General Science Notes PDF
Answers & Solutions:
1) Answer (C)
2) Answer (A)
3) Answer (C)
4) Answer (B)
$(8-(28-53)) = 8-28+53 = 33$
$(-4\times5-(-9)) = -20+9 = -11$
Therefore, $(8-(28-53))\div(-4\times5-(-9))=\dfrac{33}{-11} = -3$
5) Answer (C)
$45-[38-(80\div4-(8-12\div3)\div4)] = 45 – (38 – (20 – \dfrac{8-4}{4}))$
$= 45 – (38 -(20-\dfrac{4}{4})) = 45-(38-(20-1))$
$= 45-(38-19) = 45-19 = 26$
6) Answer (B)
$ 14 \div $ { ( 5 of 2 – 3 ) } $ \times 4 ( 7 – 2 ) $
=$ 14 \div $ 7 $ \times 4 ( 5) $
=2$ \times 4 ( 5) $
=2$ \times 20 $
=40
7) Answer (D)
$ 4 + \frac{1}{6} \times $ [ { $ – 12 \times ( 24 – 13 – 3) $ } $ \div ( 20 – 4) $ ]
=$ 4 + \frac{1}{6} \times $ [ { $ – 12 \times 8 $ } $ \div 16 $ ]
=$ 4 + \frac{1}{6} \times -6$
=4-1
=3
8) Answer (D)
9) Answer (C)
$\frac{3}{4} + \left\{\frac{3}{4} + \frac{3}{4} \div (\frac{3}{4} + \frac{3}{4})\right\}$
First solve small bracket as per BODMAS rule.
$\frac{3}{4} + \left\{\frac{3}{4} + \frac{3}{4} \div (\frac{6}{4} )\right\}$
$\frac{3}{4} + \left\{\frac{3}{4} + \frac{1}{2} \right\}$
Now solve curly bracket as per BODMAS rule.
$\frac{3}{4} + \frac{5}{4} $
$\frac{8}{4} $
2
10) Answer (D)
$\frac{391}{667}$ = $\frac{17 \times 23}{29 \times 23}$ = $\frac{17}{29}$
11) Answer (B)
$\frac{9x^{2}-24xy+16y^{2}}{3x-4y}$
=$\frac{(3x-4y)^{2}}{3x-4y}=3x-4y$
12) Answer (A)
$\frac{16 \times2^{n+1 }-4\times2^{n}}{16\times 2^{n+2}-2\times2^{n+2}}$
=$\frac{2^{n}(32-4)}{2^{n+2}(16-2)}$
=$\frac{28}{4(14)}$=$\frac{1}{2}$
13) Answer (A)
1 – 1/2 = 1/2
1 – 1/3 = 2/3
1 – 1/4 = 3/4
The denominator of the first term gets cancelled by the numerator of the second term and so on…
So, the final value = 1/40
14) Answer (C)
Using the identities
$ (a + b)^2 = a^2 + 2ab + b^2 $
$ (a – b)^2 = a^2 – 2ab + b^2 $
$ (a + b)(a – b) = a^2 – b^2 $
Rationalizing the denominator,
$\left[\frac{\sqrt{3} + 1}{\sqrt{3} – 1}\right] = \frac{\sqrt{3} + 1}{\sqrt{3} -1} \times \frac{\sqrt{3} + 1}{\sqrt{3} +1} $
Solving the equation using identities we get
$ \frac{\sqrt{3} + 1}{\sqrt{3} -1} \times \frac{\sqrt{3} + 1}{\sqrt{3} +1} = \frac{4 + 2\sqrt3}{2} $
= $ 2 + \sqrt 3 $
$\left[\frac{\sqrt{3} + 1}{\sqrt{3} – 1}\right]^2 = (2 + \sqrt 3)^2$
= $ 7 + 4\sqrt3 $
Rationalizing the denominator,
$\left[\frac{\sqrt{3} – 1}{\sqrt{3} + 1}\right] = \frac{\sqrt{3} – 1}{\sqrt{3} +1} \times \frac{\sqrt{3} -1}{\sqrt{3} -1} $
Solving the equation using identities we get
$ \frac{\sqrt{3} -1}{\sqrt{3} +1} \times \frac{\sqrt{3} – 1}{\sqrt{3} -1} = \frac{4 – 2\sqrt3}{2} $
= $ 2 – \sqrt 3 $
$\left[\frac{\sqrt{3} -1}{\sqrt{3} + 1}\right]^2 = (2 – \sqrt 3)^2$
= $ 7 – 4\sqrt3 $
Thus,
$\left[\frac{\sqrt{3} + 1}{\sqrt{3} – 1}\right]^2 + \left[\frac{\sqrt{3} – 1}{\sqrt{3} + 1}\right]^2 = 7 + 4\sqrt 3 + 7 – 4\sqrt 3 $
= 14
15) Answer (B)
DOWNLOAD APP FOR RRB FREE MOCKS
We hope this Simplification Questions for Railway Exams PDF for RRB NTPC exam will be highly useful for your Preparation.