0
274

# Maths Questions for RRB Group-D Set-3 PDF

Download Top-15 RRB Group-D Maths Questions set-3 PDF. RRB GROUP-D Maths questions based on asked questions in previous exam papers very important for the Railway Group-D exam.

Question 1: Find the value of x if 5*(4x-3/2) + 2x = 4-3x/2

a) 23/47

b) 1/2

c) 2/3

d) 3/2

Question 2: Find a-b if a+b = 23, ab = 132 ?

a) 1

b) -1

c) 2

d) Either (a) or (b)

Question 3: Find 7+8+9+10+……+50 = ?

a) 1275

b) 1254

c) 1257

d) 1244

Question 4: Find the value of $a^3+b^3$, if $a+b = 13, ab = 40$ ?

a) 627

b) 637

c) 647

d) 657

Question 5: It is known that 0 < θ < 90 and it is given that cot θ = 5/12. Find the value of cosecθ

a) 5/13

b) 13/12

c) 12/5

d) 12/13

Question 6: Find the value of $tan 48^\circ – tan 3^\circ – tan 48^\circ.tan 3^\circ$

a) 0

b) 1

c) -1

d) 2

Question 7: If 0.20 : 4 : : x : 120, then find the value of x.

a) 0.6

b) 60

c) 20

d) 6

Question 8: The average of 7 consecutive numbers is 4. Then find the smallest number.

a) 2

b) 1

c) 3

d) 5

Question 9: Three numbers A,B and C are such that A is 50% more than C and B is 50% of C. If sum of three numbers is 168, then what is the smallest number?

a) 26

b) 22

c) 18

d) 28

Question 10: Prathap distributes his money to his sons A,B,C and D in the ratio of 5:6:4:3 and B gets 6000 more than D. What is the total money distributed ?

a) 30000

b) 32000

c) 36000

d) 34000

Question 11: Find the value of the given expression.
$6 – 36 \times 3 \div 6 + 5 = ?$

a) 7

b) $\frac{-42}{11}$

c) -7

d) $\frac{42}{11}$

Question 12: A boy raises a box with a weight of 120 N through a height of 2 m. The work done by him is:

a) 60 J

b) 120 J

c) 240 J

d) 180 J

Instructions

Question 13: Value of is $12+16\div 3.7-2.80\times 2$

a) 9.8

b) 10.72

c) 12.56

d) 11.34

Question 14: Which of the fractions given below is not equal to $\frac{4}{11}$  ?

a) $\frac{32}{88}$

b) $\frac{84}{209}$

c) $\frac{64}{176}$

d) $\frac{20}{55}$

Question 15: What is the value of (361.223-34.567$\times$2+123.345)

a) 413.137

b) 412.267

c) 415.434

d) 414.367

5(4x-3/2) + 2x = 4-3x/2

20x – 15/2 + 2x = 4-3x/2

22x + 3x/2 = 4 + 15/2

47x/2 = 23/2

x = 23/47

So the answer is option A.

$(a-b)^2 = (a+b)^2 – 4ab$

$(a-b)^2 = (23)^2 – 4(132)$

$(a-b)^2 = 529 – 528$

$(a-b)^2 = 1$

$a-b = +1 or -1$

So the answer is option D.

WKT, sum of 1st n natural numbers = $\frac{n(n+1)}{2}$

$7+8+9+10+……+50 = (1+2+3+…..+50)-(1+2+3+….+6)$

This equals $\frac{(50)(51)}{2} – \frac{(6)(7)}{2} = 1275 – 21 = 1254$

So the answer is option B.

$a^3+b^3 = (a+b)^3-3ab(a+b) = 13^3-3(40)(13) = 2197 – 1560 = 637$

So the answer is option B.

$\text{cot} \theta = \frac{5}{12}$

$\text{cosec}^2 \theta$ = $1+\text{cot}^2 \theta = 1+{(\frac{5}{12})}^2 = \frac{169}{144}$

$\text{cosec}\theta = \frac{13}{12}$

So the answer is option B.

$48-3 = 45$
Applying tan on both sides
$tan (48-3)^\circ = tan 45^\circ$ → (1)
We know that $tan (A-B)^\circ = \dfrac{tan A^\circ – tan B^\circ}{1+tan A^\circ.tan B^\circ}$
Then, (1) becomes
$\dfrac{tan 48^\circ – tan 3^\circ}{1+tan 48^\circ.tan 3^\circ} = 1$ (Since, $tan 45^\circ = 1$)

$tan 48^\circ – tan 3^\circ = 1+tan 48^\circ.tan 3^\circ$
⇒ $tan 48^\circ – tan 3^\circ – tan 48^\circ.tan 3^\circ = 1$

$4\times x = 0.20\times120$
⇒ $x = \dfrac{0.20\times120}{4} = 6 8) Answer (B) Let the smallest number be x. Given,$\dfrac{x+x+1+x+2+x+3+x+4+x+5+x+6}{7} = 4$⇒ 7x+21 = 28 ⇒ 7x = 7 ⇒ x = 1 Hence, The smallest number = 1. 9) Answer (D) Let C be 2x. Then B = 50% of 2x = x A = 150% of 2x = 3x. Given, 3x+x+2x = 168 ⇒ 6x = 168 ⇒ x = 28 Therefore, Smallest number = 28 10) Answer (C) Amount received by A,B,C and D be 5x,6x,4x and 3x respectively B-D=6000 i.e 6x-3x=6000 x=2000 Total sum is 5x+6x+4x+3x=18x=36000 11) Answer (C) Using BODMAS rule, = 6 – 36 x (3/6) + 5 = 6 – 18 + 5 = -7 Hence, option C is the correct answer. 12) Answer (C) We know, Work done = Force x time According to the question, Work done = 120 x 2 Joules Work done = 240 Joules 13) Answer (B) By simplification we get =12+4.32-5.6 =10.72 14) Answer (B) After simplify all the fractions given in options, we can get the odd one.$\frac{32}{88}$=$\frac{4}{11}\frac{84}{209}$(This is not equal to$\frac{4}{11}$.)$\frac{64}{176}$=$\frac{4}{11}\frac{20}{55}$=$\frac{4}{11}\$