Algebra Questions for MAH-CET [PDF]
Here you can download a free Algebra questions PDF with answers for MAH MBA CET 2022 by Cracku. These are some tricky questions in the MAH MBA CET 2022 exam that you need to find the solutions for the given Algebra questions. These questions will help you to practice and solve the Algebra questions in the MAH MBA CET exam. Utilize this best PDF practice set which is included answers in detail. Click on the below link to download the Algebra MCQ PDF for MBA-CET 2022 for free.
Download Algebra Questions for MAH-CET
Enroll to MAH-CET 2022 Crash Course
Question 1:Â If $\sqrt{x}-\frac{1}{\sqrt{x}}=\sqrt{7}$, then the value of $x^2 + \frac{1}{x^2}$ is:
a)Â 81
b)Â 60
c)Â 79
d)Â 75
1) Answer (C)
Solution:
$\sqrt{x}-\frac{1}{\sqrt{x}}=\sqrt{7}$
$\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{7}\right)^2$
$x+\frac{1}{x}-2=7$
$x+\frac{1}{x}=9$
$\left(x+\frac{1}{x}\right)^2=9^2$
$x^2+\frac{1}{x^2}+2=81$
$x^2+\frac{1}{x^2}=79$
Hence, the correct answer is Option C
Question 2:Â If $(56\sqrt{7}x^3-2\sqrt{2}y^3)\div(2\sqrt{7}x-\sqrt{2}y)=Ax^2+By^2-Cxy$, then find the value of $A + B – \sqrt{14}C$.
a)Â 38
b)Â 10
c)Â 19
d)Â 58
2) Answer (D)
Solution:
$(56\sqrt{7}x^3-2\sqrt{2}y^3)\div(2\sqrt{7}x-\sqrt{2}y)=Ax^2+By^2-Cxy$
$\frac{\left(2\sqrt{7}x-\sqrt{2}y\right)\left(28x^2+2\sqrt{14}xy+2y^2\right)}{\left(2\sqrt{7}x-\sqrt{2}y\right)}=Ax^2+By^2-Cxy$
$28x^2+2\sqrt{14}xy+2y^2=Ax^2+By^2-Cxy$
Comparing both sides,
A = 28, B = 2, C =Â $-2\sqrt{14}$
$A+B-\sqrt{14}C=28+2-\sqrt{14}\left(-2\sqrt{14}\right)$
$=30+28$
$=58$
Hence, the correct answer is Option D
Question 3:Â If $\frac{x}{y} + \frac{y}{x} = 2, (x, y \neq 0)$, then the value of $(x – y)$ is:
a)Â 1
b)Â 0
c)Â 2
d)Â -2
3) Answer (B)
Solution:
$\frac{x}{y}+\frac{y}{x}=2$
$\frac{x^2+y^2}{xy}=2$
$x^2+y^2=2xy$
$x^2+y^2-2xy=0$
$\left(x-y\right)^2=0$
$x-y=0$
Hence, the correct answer is Option B
Question 4:Â If $\left(2a+\frac{3}{a}-1\right)=11$, what is the value of $\left(4a^2 + \frac{9}{a^2}\right)?$
a)Â 121
b)Â 148
c)Â 132
d)Â 110
4) Answer (C)
Solution:
$\left(2a+\frac{3}{a}-1\right)=11$
$2a+\frac{3}{a}=12$
$4a^2+\frac{9}{a^2}+2.2a.\frac{3}{a}=144$
$4a^2+\frac{9}{a^2}+12=144$
$4a^2+\frac{9}{a^2}=132$
Hence, the correct answer is Option C
Question 5:Â If $a^3 – b^3 = 2349$ and $(a – b) = 9$, then $(a + b)^2 – ab$ is equal to:
a)Â 280
b)Â 244
c)Â 261
d)Â 229
5) Answer (C)
Solution:
$(a-b)=9$………….(1)
$(a-b)^3=729$
$a^3-b^3-3ab\left(a-b\right)=729$
$2349-3ab\left(9\right)=729$
$27ab=1620$
$ab=60$…………..(2)
$(a-b)=9$
$(a-b)^2=81$
$a^2+b^2-2ab=81$
$a^2+b^2-2\left(60\right)=81$
$a^2+b^2-120=81$
$a^2+b^2=201$……….(3)
$(a+b)^2-ab=a^2+b^2+2ab-ab$
$=a^2+b^2+ab$
$=201+60$
$=261$
Hence, the correct answer is Option C
Take Free MAH-CET mock tests here
Enrol to 5 MAH CET Latest Mocks For Just Rs. 299
Question 6:Â If $x – \frac{1}{x} = \sqrt{77}$, then one of the values of $x^3 + \frac{1}{x^3}$ is:
a)Â $80\sqrt{77}$
b)Â -702
c)Â $77\sqrt{77}$
d)Â $3\sqrt{77}$
6) Answer (B)
Solution:
$x – \frac{1}{x} = \sqrt{77}$
$\left(x-\frac{1}{x}\right)^2=77$
$x^2+\frac{1}{x^2}-2=77$
$x^2+\frac{1}{x^2}=79$
$x^2+\frac{1}{x^2}+2=81$
$\left(x+\frac{1}{x}\right)^2=81$
$x+\frac{1}{x}=9$ or $x+\frac{1}{x}=-9$
When $x+\frac{1}{x}=-9$
$x^3+\frac{1}{x^3}+3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)=-729$
$x^3+\frac{1}{x^3}+3\left(-9\right)=-729$
$x^3+\frac{1}{x^3}-27=-729$
$x^3+\frac{1}{x^3}=-702$
Hence, the correct answer is Option B
Question 7:Â If $\sqrt{x}=\sqrt{3}-\sqrt{5}$, then the value of $x^2-16x+6$ is:
a)Â 4
b)Â 0
c)Â 2
d)Â -2
7) Answer (C)
Solution:
Given, $\sqrt{x}=\sqrt{3}-\sqrt{5}$
$\Rightarrow$ Â $x=\left(\sqrt{3}-\sqrt{5}\right)^2$
$\Rightarrow$ Â $x=3+5-2\sqrt{15}$
$\Rightarrow$ Â $x=8-2\sqrt{15}$ ……………(1)
$\Rightarrow$ Â $x^2=\left(8-2\sqrt{15}\right)^2$
$\Rightarrow$ Â $x^2=64+60-32\sqrt{15}$
$\Rightarrow$ Â $x^2=124-32\sqrt{15}$ ………..(2)
$\therefore\ $ $x^2-16x+6=124-32\sqrt{15}-16\left(8-2\sqrt{15}\right)+6$
$=124-32\sqrt{15}-128+32\sqrt{15}+6$
$=130-128$
$=2$
Hence, the correct answer is Option C
Question 8:Â If $x=\frac{\sqrt{3}}{2}$, then the value of $\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}$ is equal to:
a)Â $\sqrt 2$
b)Â $\sqrt 3$
c)Â 3
d)Â 2
8) Answer (B)
Solution:
Given, $x=\frac{\sqrt{3}}{2}$
$\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\times\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$
$=\frac{1+x+1-x+2\left(\sqrt{1+x}\right)\left(\sqrt{1-x}\right)}{1+x-\left(1-x\right)}$
$=\frac{2+2\left(\sqrt{1-x^2}\right)}{2x}$
$=\frac{1+\sqrt{1-x^2}}{x}$
$=\frac{1+\sqrt{1-\left(\frac{\sqrt{3}}{2}\right)^2}}{\frac{\sqrt{3}}{2}}$
$=\frac{1+\sqrt{1-\frac{3}{4}}}{\frac{\sqrt{3}}{2}}$
$=\frac{1+\frac{1}{2}}{\frac{\sqrt{3}}{2}}$
$=\frac{3}{2}\times\frac{2}{\sqrt{3}}$
$=\sqrt{3}$
Hence, the correct answer is Option B
Question 9:Â If $a^3+b^3=62$ and a + b = 2, then the value of ab is:
a)Â -6
b)Â 9
c)Â 6
d)Â -9
9) Answer (D)
Solution:
Given, $a+b=2$
$a^3+b^3=62$
$\Rightarrow$ Â $\left(a+b\right)\left(a^2-ab+b^2\right)=62$
$\Rightarrow$ Â $\left(2\right)\left(a^2+2ab+b^2-3ab\right)=62$
$\Rightarrow$ Â $\left(a+b\right)^2-3ab=31$
$\Rightarrow$ Â $\left(2\right)^2-3ab=31$
$\Rightarrow$ Â $4-3ab=31$
$\Rightarrow$ Â $3ab=-27$
$\Rightarrow$ Â $ab=-9$
Hence, the correct answer is Option D
Question 10:Â If $a-b=18$ and $a^3-b^3=324$, then find ab.
a)Â 105
b)Â -102
c)Â -104
d)Â 103
10) Answer (B)
Solution:
Given, $a-b=18$ and
$a^3-b^3=324$
$\Rightarrow$ Â $\left(a-b\right)\left(a^2+ab+b^2\right)=324$
$\Rightarrow$Â $\left(18\right)\left(a^2-2ab+b^2+3ab\right)=324$
$\Rightarrow$ Â $\left(a-b\right)^2+3ab=18$
$\Rightarrow$ Â $\left(18\right)^2+3ab=18$
$\Rightarrow$ Â $324+3ab=18$
$\Rightarrow$ Â $3ab=-306$
$\Rightarrow$ Â $ab=-102$
Hence, the correct answer is Option B
Question 11:Â If $x^4+\frac{1}{x^4}=14159$, then the value of $x+\frac{1}{x}$ is:
a)Â 11
b)Â 12
c)Â 9
d)Â 10
11) Answer (A)
Solution:
Given, Â $x^4+\frac{1}{x^4}=14159$
$\Rightarrow$ Â $x^4+\frac{1}{x^4}+2=14159+2$
$\Rightarrow$ Â $\left(x^2+\frac{1}{x^2}\right)^2=14161$
$\Rightarrow$ Â $\left(x^2+\frac{1}{x^2}\right)^2=\left(119\right)^2$
$\Rightarrow$ Â $x^2+\frac{1}{x^2}=119$
$\Rightarrow$ Â $x^2+\frac{1}{x^2}+2=119+2$
$\Rightarrow$ Â $\left(x+\frac{1}{x}\right)^2=121$
$\Rightarrow$ Â $x+\frac{1}{x}=11$
Hence, the correct answer is Option A
Question 12:Â If $p+\frac{1}{p}=112$, find $(p-112)^{15}+\frac{1}{p^{15}}$
a)Â 1
b)Â 15
c)Â 10
d)Â 0
12) Answer (D)
Solution:
Given, $p+\frac{1}{p}=112$
$\Rightarrow$ Â $p-112=-\frac{1}{p}$
$(p-112)^{15}+\frac{1}{p^{15}}=\left(-\frac{1}{p}\right)^{15}+\frac{1}{p^{15}}$
$=-\frac{1}{p^{15}}+\frac{1}{p^{15}}$
$=0$
Hence, the correct answer is Option D
Question 13:Â If $\frac{4}{3}\left(x^2+\frac{1}{x^2}\right)=110\frac{2}{3}$, find $\frac{1}{9} \left(x^3 – \frac{1}{x^3}\right)$, where $x$ > 0.
a)Â 74
b)Â 76
c)Â 84
d)Â 85
13) Answer (C)
Solution:
Given, $\frac{4}{3}\left(x^2+\frac{1}{x^2}\right)=110\frac{2}{3}$
$\Rightarrow$ Â $\frac{4}{3}\left(x^2+\frac{1}{x^2}\right)=\frac{332}{3}$
$\Rightarrow$ Â $x^2+\frac{1}{x^2}=83$
$\Rightarrow$ Â $x^2+\frac{1}{x^2}-2=83-2$
$\Rightarrow$ Â $\left(x-\frac{1}{x}\right)^2=81$
$\Rightarrow$ Â $x-\frac{1}{x}=9$
$\Rightarrow$ Â $\left(x-\frac{1}{x}\right)^3=9^3$
$\Rightarrow$ Â $x^3-\frac{1}{x^3}-3.x.\frac{1}{x}\left(x-\frac{1}{x}\right)=729$
$\Rightarrow$ Â $x^3-\frac{1}{x^3}-3\left(9\right)=729$
$\Rightarrow$ Â $x^3-\frac{1}{x^3}-27=729$
$\Rightarrow$ Â $x^3-\frac{1}{x^3}=756$
$\Rightarrow$ Â $\frac{1}{9}\left(x^3-\frac{1}{x^3}\right)=\frac{1}{9}\left(756\right)$
$\Rightarrow$ Â $\frac{1}{9}\left(x^3-\frac{1}{x^3}\right)=84$
Hence, the correct answer is Option C
Question 14:Â If $x^3+y^3=16$ and $x+y=4$, then the value of $x^4+y^4$ is:
a)Â 48
b)Â 32
c)Â 64
d)Â 30
14) Answer (B)
Solution:
Given, $x^3+y^3=16$ and $x+y=4$
$\Rightarrow$ Â $\left(x+y\right)\left(x^2-xy+y^2\right)=16$
$\Rightarrow$ Â $\left(4\right)\left(x^2+2xy+y^2-3xy\right)=16$
$\Rightarrow$ Â $\left(x+y\right)^2-3xy=4$
$\Rightarrow$ Â $\left(4\right)^2-3xy=4$
$\Rightarrow$ Â $3xy=16-4$
$\Rightarrow$ Â $3xy=12$
$\Rightarrow$ Â $xy=4$
$\therefore\ $ $x^4+y^4=x^4+y^4+2x^2y^2-2x^2y^2$
$=\left[x^2+y^2\right]^2-2\left(xy\right)^2$
$=\left[x^2+y^2+2xy-2xy\right]^2-2\left(4\right)^2$
$=\left[\left(x+y\right)^2-2xy\right]^2-32$
$=\left[\left(4\right)^2-2\left(4\right)\right]^2-32$
$=\left[16-8\right]^2-32$
$=64-32$
$=32$
Hence, the correct answer is Option B
Question 15:Â If $a^2+\frac{2}{a^2}=16$, then find the value of $\frac{72a^2}{a^4+2+8a^2}$
a)Â 2
b)Â 4
c)Â 1
d)Â 3
15) Answer (D)
Solution:
Given, Â $a^2+\frac{2}{a^2}=16$
$\frac{72a^2}{a^4+2+8a^2}=\frac{72a^2}{a^2\left(a^2+\frac{2}{a^2}+8\right)}$
$=\frac{72}{a^2+\frac{2}{a^2}+8}$
$=\frac{72}{16+8}$
$=\frac{72}{24}$
$=3$
Hence, the correct answer is Option D
Question 16:Â If a + 3b = 12 and ab = 9, then the value of (a – 3b) is:
a)Â 9
b)Â 8
c)Â 6
d)Â 4
16) Answer (C)
Solution:
Given, $a+3b=13$
$\Rightarrow$ Â $\left(a+3b\right)^2=12^2$
$\Rightarrow$ Â $a^2+9b^2+6ab=144$
$\Rightarrow$ Â $a^2+9b^2+6\left(9\right)=144$
$\Rightarrow$ Â $a^2+9b^2+54-6ab+6ab=144$
$\Rightarrow$ Â $a^2+9b^2-6ab+6ab=90$
$\Rightarrow$ Â $\left(a-3b\right)^2+6ab=90$
$\Rightarrow$ Â $\left(a-3b\right)^2+6\left(9\right)=90$
$\Rightarrow$ Â $\left(a-3b\right)^2+54=90$
$\Rightarrow$ Â $\left(a-3b\right)^2=36$
$\Rightarrow$ Â $a-3b=6$
Hence, the correct answer is Option C
Question 17:Â If $1 + 9r^2 + 81r^4 = 256$ and $1 + 3r + 9r^2 = 32$, then find the value of $1 – 3r + 9r^2$.
a)Â 4
b)Â 8
c)Â 16
d)Â 12
17) Answer (B)
Solution:
Given that $1 + 3r + 9r^2 = 32$
and let $1 – 3r + 9r^2$ be K
Multiply $1 + 3r + 9r^2$ and $1 – 3r + 9r^2$
we get the product as $1 + 9r^2 + 81r^4$ = 32K
but $1 + 9r^2 + 81r^4$= 256
substitute this value in the product
256 = 32k
K=8
Therefore, answer is option B
Question 18: If $x^3 — 6x^2 + ax + b$ is divisible by $(x^2 — 3x + 2)$, then the values of a and b are:
a)Â a = -6 and b = -11
b)Â a = -11 and b = 6
c)Â a = 11 and b = -6
d)Â a = 6 and b = 11
18) Answer (C)
Solution:
Given, $x^3—6x^2+ax+b$ is divisible by $(x^2 — 3x + 2)$
Let the quotient when $x^3 — 6x^2 + ax + b$ is divisible by $(x^2 — 3x + 2)$ be $x-p$
$\Rightarrow$ $(x^2—3x+2)\left(x-p\right)=x^3—6x^2+ax+b$
$\Rightarrow$ $x^3-3x^2+2x-px^2+3px-2p=x^3—6x^2+ax+b$
$\Rightarrow$  $x^3-\left(3+p\right)x^2+\left(2+3p\right)x-2p=x^3—6x^2+ax+b$
Comparing both sides,
$-\left(3+p\right)=-6$
$\Rightarrow$ Â $p=3$
$2+3p=a$
$\Rightarrow$ Â $2+3\left(3\right)=a$
$\Rightarrow$ Â $a=11$
$-2p=b$
$\Rightarrow$ Â $-2\left(3\right)=b$
$\Rightarrow$ Â $b=-6$
$\therefore\ $ a = 11 and b = -6
Hence, the correct answer is Option C
Question 19:Â If $x – \frac{1}{x} = 13,$ then the value of $x^2 + \frac{1}{x^2}$ is:
a)Â 165
b)Â 171
c)Â 167
d)Â 169
19) Answer (B)
Solution:
Given, $x-\frac{1}{x}=13$
$\Rightarrow$Â $\left(x-\frac{1}{x}\right)^2=13^2$
$\Rightarrow$ $x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=169$
$\Rightarrow$Â $x^2+\frac{1}{x^2}-2=169$
$\Rightarrow$Â $x^2+\frac{1}{x^2}=171$
Hence, the correct answer is Option B
Question 20:Â If $A = \frac{x – 1}{x + 1}$, then the value of $A – \frac{1}{A}$ is:
a)Â $\frac{-4(2x – 1)}{x^2 – 1}$
b)Â $\frac{x^2 – 1}{-4(2x – 1)}$
c)Â $\frac{x^2 – 1}{-4(2x + 1)}$
d)Â $\frac{-4x}{x^2 – 1}$
20) Answer (D)
Solution:
Given, $A=\frac{x-1}{x+1}$
$A-\frac{1}{A}$ =Â $\frac{x-1}{x+1}-\frac{x+1}{x-1}$
$=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{x^2-1}$
$=\frac{x^2-2x+1-\left(x^2+2x+1\right)^{ }}{x^2-1}$
$=\frac{x^2-2x+1-x^2-2x-1}{x^2-1}$
$=\frac{-4x}{x^2-1}$
Hence, the correct answer is Option D