Surds And Indices Questions For IBPS Clerk PDF

0
1457
surds and indices questions for ibps clerk pdf
surds and indices questions for ibps clerk pdf

Surds And Indices Questions For IBPS Clerk PDF

Download important Surds and Indices Questions PDF based on previously asked questions in IBPS Clerk and other Banking Exams. Practice Surds and Indices Question and Answers for IBPS Clerk Exam.

Download surds And Indices Questions For IBPS Clerk PDF

105 IBPS Clerk for just Rs. 199

Take Free IBPS Clerk Mock Test

Download IBPS Clerk Previous papers PDF

Go to Free Banking Study Material (15,000 Solved Questions)

Question 1: If log32,log3(2x5),log3(2x7/2) are in arithmetic progression, then the value of x is equal to

a) 5

b) 4

c) 2

d) 3

Question 2: Let u=(log2x)26log2x+12 where x is a real number. Then the equation xu=256, has

a) no solution for x

b) exactly one solution for x

c) exactly two distinct solutions for x

d) exactly three distinct solutions for x

Question 3: If x = -0.5, then which of the following has the smallest value?

a) 21/x

b) 1/x

c) 1/x2

d) 2x

e) 1/x

IBPS Clerk Online Mock Test

Question 4: Which among 21/2,31/3,41/4,61/6, and 121/12 is the largest?

a) 21/2

b) 31/3

c) 41/4

d) 61/6

e) 121/12

Question 5: If logyx=(alogzy)=(blogxz)=ab, then which of the following pairs of values for (a, b) is not possible?

a) (-2, 1/2)

b) (1,1)

c) (0.4, 2.5)

d) (π, 1/ π)

e) (2,2)

Question 6: If x >= y and y > 1, then the value of the expression logx(x/y)+logy(y/x) can never be

a) -1

b) -0.5

c) 0

d) 1

IBPS Clerk Previous Papers

Question 7: If f(x)=log(1+x)(1x), then f(x) + f(y) is

a) f(x+y)

b) f(x+y)(1+xy)

c) (x+y)f1(1+xy)

d) f(x)+f(y)(1+xy)

Question 8: 273272271 is the same as

a) 269

b) 270

c) 271

d) 272

Question 9: Find the value of 11+1342+1312 + 3343+1212

a) 137

b) 157

c) 1121

d) 1728

Question 10: If log2log7(x2x+37) = 1, then what could be the value of ‘x’?

a) 3

b) 5

c) 4

d) None of these

IBPS Clerk Important Questions PDF

Free Banking Study Material (15,000 Solved Questions)

Question 11: Which of the following is true?

a) 7(32)=(73)2

b) 7(32)>(73)2

c) 7(32)<(73)2

d) None of these

Question 12: If log2x.logx642=logx162. Then x is

a) 2

b) 4

c) 16

d) 12

Question 13: What is the value of ab, If log4log44ab=2log4(ab)+1

a) -5/3

b) 2

c) 5/3

d) 1

Question 14: log52 is

a) An integer

b) A rational number

c) A prime number

d) An irrational number

Question 15: Find the coefficient of x12 in the expansion of (1x6)4(1x)4

a) 113

b) 119

c) 125

d) 132

Question 16: (22572925144)÷1681=?

a) 516

b) 712

c) 38

d) None of these

Question 17: Find the value of x from the following equation:
log103+log10(4x+1)=log10(x+1)+1

a) 2/7

b) 7/2

c) 9/2

d) None of the above

Question 18: If log3,log(3x2) and log(3x+4) are in arithmetic progression, then x is equal to

a) 83

b) log38

c) log23

d) 8

Question 19: The value of 7+77+7.. is

a) 1

b) 2

c) 3

d) 4

Question 20: The unit digit in the product of (8267)153×(341)72 is

a) 1

b) 2

c) 7

d) 9

Daily Free Banking Online Tests

Answers & Solutions:

1) Answer (D)

2log(2x5)=log2+log(2x7/2)
Let 2x=t
=> (t5)2=2(t7/2)
=> t2+2510t=2t7
=> t212t+32=0
=> t = 8, 4
Therefore, x = 2 or 3, but 2x > 5, so x = 3

2) Answer (B)

xu=256

Taking log to the base 2 on both the sides,

ulog2x=log2256

=>[(log2x)26log2x+12]log2x=8

(log2x)36(log2x)2+12log2x=8

Let log2x=t

t36t2+12t8=0

(t2)3=0

Therefore, log2x=2

=> x=4 is the only solution

Hence, option B is the correct answer.

3) Answer (B)

2p is always positive

x2 is always non negative.

1/x is always positive.

1x is negative when x is negative.

In this case, x is negative => 1x is smallest.

4) Answer (B)

Make the power equal and compare the denominators.

21/2 can be written as 641/12

31/3 can be written as 811/12

41/4 can be written as 641/12

61/6 can be written as 361/12

Among these, 811/12 is the greatest => 31/3 is the greatest.

5) Answer (E)

logyx=ab
alogzy=ab => logzy=b
blogxz=ab => logxz=a
logyx = logzylogxz => logx/logy = logy/logzlogz/logx
=> logxlogy=logylogx
=> (logx)2=(logy)2
=> logx=logy or logx=logy
So, x = y or x = 1/y
So, ab = 1 or -1
Option 5) is not possible

6) Answer (D)

logx(x/y)+logy(y/x) = 1logx(y)+1logy(x)
= 2(logxy+1/logxy) <= 0 (Since logxy+1/logxy >= 2)
So, the value of the expression cannot be 1.

7) Answer (B)

If f(x)=log(1+x)(1x) then f(y)=log(1+y)(1y)

Also Log (A*B)= Log A + Log B

f(x)+f(y) = log(1+x)(1+y)(1x)(1y) solving we get log1+(x+y)(1+xy)1(x+y)(1+xy)

Hence option B.

8) Answer (C)

271(22211)
271(421)
271

9) Answer (B)

First term can be reduced to 3321 or 117

And second term can be reduced to 1628 or 47

Sum will be = 117 + 47 = 157

10) Answer (C)

log2log7(x2x+37) = 1

log7(x2x+37) = 2

(x2x+37) = 72

Given eq. can be reduced to x2x+37=49

So x can be either -3 or 4.

11) Answer (B)

7(32)=79

(73)2=76

So 7(32)>(73)2

12) Answer (B)

log2x.logx642=logx162

i.e. logxlog2log2logxlog64=log2logxlog16

i.e. logx(logxlog16)logxlog64 = log2

let t = log x

Therefore,  t(tlog16)tlog64 = log2

t24log2t=tlog26(log2)2

I.e. t25log2t6(log2)2 = 0

I.e. t23log2t2log2t6(log2)2 = 0

i.e. t(t3log2)2log2(t3log2) = 0

i.e t=2log2 or t=3log2

i.e logx=log4 or logx=log8

therefore x=4 or 8

therefore our answer is option ‘B’

13) Answer (C)

ab, If log4log44ab=2log4(ab)+log44

i.e. log4log44ab=log4((ab)2)4

i.e. log44ab=((ab)2)4

i.e. (a-b)*log44=((ab)2)4

i.e. a-b = 4a+4b-8ab

i.e. 3a + 5b – 8ab = 0

i.e. 3ab2 – 8ab+5 = 0

put ab = t

therefore 3t2 – 8t + 5 = 0

solving we get t = 1 or t = 53

i.e. ab = 1 or 53

but if ab = 1 then a=b then log4(ab) will become indefinite

Therefore  ab53

Therefore our answer is option ‘C’

14) Answer (D)

Let log52 = y

Let us assume  log52 is a rational number.

log52 = p/q, where p and q are co primes.

5^(p/q)=2 => 5^p=2^q.

5^p=5*5*5*5*5*5*5………………p times

2^p=2*2*2*2*2*2*2………………q times

No value of p and q can satisfy the equation. Hence y is an irrational number.

15) Answer (C)

We can write (1x6)4 = 4C0(1)4(x6)04C1(1)3(x6)1 + 4C2(1)2(x6)24C3(1)1(x6)3+ 4C4(1)0(x6)4

 (1x6)4=(14x6+6x124x18+x24)

Therefore, we can say

(1x6)4(1x)4=(14x6+6x124x18+x24)(1x)4

We have to find out coefficient of x12, x6, x0 in (1x)4.

We can use binomial expansion for negative coefficients. Therefore, coefficient of x12 in (1x)4

(4)(41)(42)(411)12!

15!12!3!

151413321

455

Similarly, coefficient of x6 in (1x)4

(4)(41)(42)(45)6!

9!6!3!

789321

84

Coefficient of x0 in (1x)4 is 1.

Therefore, we can say that the coefficient of x12 in the expansion of (1x6)4(1x)4 = 455+(-4*84)+(1*6) = 125. Hence, option C is the correct answer.

Alternative Solution:

(1x6)4=(1x)4(1+x+x2+x3+x4+x5)4

(1x6)4(1x)4=(1+x+x2+x3+x4+x5)4

Hence we need to find coeff of  x12 in (1+x+x2+x3+x4+x5)4 =  (1+x+x2+x3+x4+x5)×(1+x+x2+x3+x4+x5)×(1+x+x2+x3+x4+x5)×(1+x+x2+x3+x4+x5)

This will be equal to number of integral solutions for a + b + c + d = 12, 0<=a,b,c,d<=4

a is the power of x from the first expression, b is the power of x

Lets find the set of values for (a,b,c,d)

(5,5,2,0) => Number of ways of arranging = 4!/2! = 12

(5,5,1,1) => Number of ways of arranging = 4!/(2!*2!) = 6

(5,4,3,0) => Number of ways of arranging = 4! = 24

(5,4,2,1) => Number of ways of arranging = 4! = 24

(5,3,2,2) => Number of ways of arranging = 4!/2! = 12

(5,3,3,1) => Number of ways of arranging = 4!/2! = 12

(4,4,4,0) => Number of ways of arranging = 4!/3! = 4

(4,4,3,1) => Number of ways of arranging = 4!/2! = 12

(4,4,2,2) => Number of ways of arranging = 4!/(2!*2!) = 6

(4,3,3,2) => Number of ways of arranging = 4!/2! = 12

(3,3,3,3) => Number of ways of arranging = 4!/4! = 1

Hence the coeff of x12 = 24*2 + 12*5 + 6*2 + 4 + 1 = 125

16) Answer (A)

(22572925144)÷1681=x This can be simplified as

(1527512)÷49=x

(536)94=x

x=516. Hence, option A is the correct answer.

17) Answer (B)

log103+log10(4x+1)=log10(x+1)+1 can be written as

log103+log10(4x+1)=log10(x+1)+log1010

We know that log10a+log10b=log10ab

log103(4x+1)=log10(x+1)10

12x+3=10x+10

x=7/2. Hence, option B is the correct answer.

18) Answer (B)

If log3,log(3x2) and log(3x+4) are in arithmetic progression
Then, 2log(3x2)=log3+log(3x+4)
Thus, log(3x2)2=log3(3x+4)
Thus, (3x2)2=3(3x+4)
=> 32x43x+4=33x+12
=> 32x73x8=0
=> (3x+1)(3x8)=0
But 3x+10
Thus, 3x=8
Hence, x=log38
Hence, option B is the correct answer.

19) Answer (C)

Let, 7+77+7.. = x
Thus, 7+7x = x
=> 7+7x=x2
=> 7x=(x27)2
Putting options we get,
x=1 => 6(6)2
x=2 => 5(3)2
x=3 => 4=(97)2
x=4 => 3(9)2
Hence, option C is the correct answer.

20) Answer (C)

The unit digit in the product of (8267)153×(341)72 is the same as the unit digit in the product of (7)153×(1)72
1 raised to anything is 1.
7 has a cyclicity  of 4. Thus, 7153=71=7
Hence, option C is the correct answer.

Highly Rated Free Preparation App for Banking Exams

4 Free IBPS Clerk Mock Tests

We hope this Surds and Indices questions and answers for IBPS Clerk preparation will be helpful to you.

LEAVE A REPLY

Please enter your comment!
Please enter your name here