SSC CGL Algebra Questions
Download Top-20 Algebra questions for SSC CGL exam. Most important Algebra questions based on asked questions in previous exam papers for SSC CGL.
Download Top – 20 SSC CGL Algebra questions
Get 125 SSC CGL Mocks – Just Rs. 199
Take a free SSC CGL Tier-1 mock test
Download SSC CGL Tier-1 Previous Papers PDF
Question 1:Â If a * b = 2a + 3b – ab, then the value of (3 * 5 + 5 * 3) is
a)Â 10
b)Â 6
c)Â 4
d)Â 2
Question 2: If a * b = $a^{b}$, then the value of 5 * 3 is
a)Â 125
b)Â 243
c)Â 53
d)Â 15
Question 3:Â If $x = 1 + \sqrt{2} + \sqrt{3}$ , then the value of $(2x^4 – 8x^3 – 5x^2 + 26x- 28)$ is __?
a)Â $6\sqrt{6}$
b)Â $0$
c)Â $3\sqrt{6}$
d)Â $2\sqrt{6}$
Question 4:Â If $a^2+b^2+c^2=2(a-2b-c-3)$ then the value of a+b+c is
a)Â 3
b)Â 0
c)Â 2
d)Â 4
Question 5:Â Find the simplest value of $2\sqrt{50} + \sqrt{18} – \sqrt{72}$ is __? $(\sqrt{2} = 1.414)$.
a)Â 9.898
b)Â 10.312
c)Â 8.484
d)Â 4.242
Question 6:Â If $a^{3}-b^{3}-c^{3}=0$ then the value of $a^{9}-b^{9}-c^{9}-3a^{3} b^{3} c^{3}$ is
a)Â 1
b)Â 2
c)Â 0
d)Â -1
Question 7:Â If $a^{3}-b^{3}-c^{3}=0$ then the value of $a^{9}-b^{9}-c^{9}-3a^{3} b^{3} c^{3}$ is
a)Â 1
b)Â 2
c)Â 0
d)Â -1
Question 8:Â If x + y + z = 6 and $x^{2}+y^{2}+z^{2}$=20 then the value of $x^{3}+y^{3}+z^{3}$-3xyz is
a)Â 64
b)Â 70
c)Â 72
d)Â 76
Question 9:Â If $\frac{p^2}{q^2}+\frac{q^2}{p^2}$=1 then the value of $(p^{6}+q^{6})$ is
a)Â 0
b)Â 1
c)Â 2
d)Â 3
Question 10:Â If $x=\frac{a-b}{a+b},y=\frac{b-c}{b+c},z=\frac{c-a}{c+a}$ then $\frac{(1-x)(1-y)(1-z)}{(1+x)(1+y)(1+z)}$ is equal to
a)Â 1
b)Â 0
c)Â 2
d)Â $\frac{1}{2}$
Join Exam Preparation Telegram Group
Question 11:Â If $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+\sqrt{7} b$ the values of a and b are respectively
a)Â $\sqrt{7},-1$
b)Â $\sqrt{7}, 1$
c)Â $0, -\frac{2}{3}$
d)Â $-\frac{2}{3}, 0$
Question 12:Â If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ then $x^{3} + \frac{1}{x^{3}}$ is equal to
a)Â 98
b)Â 1000
c)Â 5
d)Â 970
Question 13:Â $\sqrt{\sqrt{\sqrt{0.00000256}}}$
a)Â 0.4
b)Â 0.02
c)Â 0.04
d)Â 0.2
Question 14:Â If m = – 4, n = – 2, then the value of $m^3 – 3m^2 + 3m + 3n + 3n^2 + n^3$ is
a)Â – 126
b)Â 124
c)Â – 124
d)Â 126
Question 15:Â If $x+\frac{1}{x}=1$ then the value of $\frac{x^2+3x+1}{x^2+7x+1}$
a)Â $1$
b)Â $\frac{3}{7}$
c)Â $\frac{1}{2}$
d)Â 2
Get 125 SSC CGL Mocks – Just Rs. 199
Question 16:Â If the cube root of 79507 is 43, then the value of $\sqrt[3]{79.507}+\sqrt[3]{0.079507}+\sqrt[3]{0.000079507}$
is
a)Â 0.4773
b)Â 477.3
c)Â 47.73
d)Â 4.773
Question 17:Â If $\frac{x}{y}$=$\frac{3}{4}$ the ratio of $(2x+3y)$ and $(3y-2x)$ is
a)Â 2 : 1
b)Â 3 : 2
c)Â 1 : 1
d)Â 3 : 1
Question 18:Â If m – 5n = 2, then the vlaue of $(m^{3} – 125n^{3}$ – 30 mn) is
a)Â 6
b)Â 7
c)Â 8
d)Â 9
Question 19:Â If $x+\frac{1}{x}=2$ then the value of $x^{12}+\frac{1}{x^{12}}$ is
a)Â 2
b)Â -4
c)Â 0
d)Â 4
Question 20:Â If 5x + 9y = 5 and $125x^{3}$ + $729y^{3}$ = 120 then the value of the product of x and y is
a)Â $\frac{1}{9}$
b)Â $\frac{1}{135}$
c)Â $45$
d)Â $135$
More SSC CGL Important Questions and Answers PDF
Answers & Solutions:
1) Answer (A)
For 3*5 put a=3 and b=5 in given equation
and for 5*3 put a=5 and b=3 in equation
now add both values
2) Answer (A)
Put a=5 and b=3 in given equation
hence it will be $5^{3}$ = 125
3) Answer (A)
x = 1+ $\sqrt {2} + \sqrt {3} $
$(x-1)^{2}$ = $(\sqrt {2} + \sqrt {3}) ^ {2} $
$x^{2} +1 – 2x = 5 + 2 \sqrt {6}$
$x^{2} – 2x = 4 + 2 \sqrt {6}$ ( eq. (1) )
$(x^{2} – 2x)^{2} = x^{4} + 4x^{2} – 4x^{3} = 40 + 16\sqrt{6} $ eq (2)
Now in $2x^{4} – 8x^{3} – 5x^{2} + 26x – 28 $
or $2(x^{4} – 4x^{3}) – 5x^{2} + 26x – 28 $ ( putting values from eq (1) and eq (2) )
After solving we will get it reduced to $6\sqrt{6}$
4) Answer (B)
Given $a^2+b^2+ c^2=2(a-2b-c-3)$,
So, $(a-1)^2+(b+2)^2+(c-1)^2=0$
Hence, a=1, b=-2 and c=1
So, the sum of the equation is
5) Answer (A)
Given equation can be reduced in the form of $10\sqrt2 + 3\sqrt2 – 6\sqrt2 = 7\sqrt2$
Hence  $7\sqrt2$ will be around 9.898
6) Answer (C)
shortcut :
put c = 0 in  $a^{3}-b^{3}-c^{3}=0$ $\Rightarrow$ $a^{3}=b^{3}$
$a^{9}-b^{9}-(0)^{9}-3a^{3} b^{3} (0)^{3}$ =Â $a^{9}-b^{9}$ =Â $(a^{3})^{3}-(b^{3})^{3}$ =Â Â $(a)^{3}-(a)^{3}$ = 0Â ( $\because$ $a^{3}=b^{3}$ )
so the answer is option C.
normal method :
$a^{3}-b^{3}-c^{3}=0$
$a^{3}=b^{3}+c^{3}$
cubing on both sides,
$(a^{3})^{3}=(b^{3}+c^{3})^{3}$
$a^{9}=b^{9}+c^{9}+3b^{3} c^{3}(b^{3}+c^{3})$
$a^{9}=b^{9}+c^{9}+3b^{3} c^{3}(a^{3})$
$a^{9}-b^{9}-c^{9}-3a^{3}b^{3} c^{3}=0$
so the answer is option C.
7) Answer (C)
shortcut :
put c = 0 in  $a^{3}-b^{3}-c^{3}=0$ $\Rightarrow$ $a^{3}=b^{3}$
$a^{9}-b^{9}-(0)^{9}-3a^{3} b^{3} (0)^{3}$ =Â $a^{9}-b^{9}$ =Â $(a^{3})^{3}-(b^{3})^{3}$ =Â Â $(a)^{3}-(a)^{3}$ = 0Â ( $\because$ $a^{3}=b^{3}$ )
so the answer is option C.
normal method :
$a^{3}-b^{3}-c^{3}=0$
$a^{3}=b^{3}+c^{3}$
cubing on both sides,
$(a^{3})^{3}=(b^{3}+c^{3})^{3}$
$a^{9}=b^{9}+c^{9}+3b^{3} c^{3}(b^{3}+c^{3})$
$a^{9}=b^{9}+c^{9}+3b^{3} c^{3}(a^{3})$
$a^{9}-b^{9}-c^{9}-3a^{3}b^{3} c^{3}=0$
so the answer is option C.
8) Answer (C)
We know that $x^{3}+y^{3}+z^{3}-3xyz = (x + y + z)(x^2 +y^2 + z^2 -xy-yz-xz)$
$x^{3}+y^{3}+z^{3}-3xyz = (6)(20 -xy-yz-xz)$
Hence the solution must be a multiple of 6.
Out of the given options only Option C is a multiple of 6.
Hence Option C is the correct answer.
9) Answer (A)
Expression : $\frac{p^2}{q^2}+\frac{q^2}{p^2}$ = 1
=> $\frac{p^{4}+q^{4}}{p^2q^2}$ = 1
=> $p^4+q^4 = p^2q^2$ ————–Eqn(1)
Now, to find : $(p^{6}+q^{6})$
=> $(p^2)^3 + (q^2)^3$
Using the formula, $a^3 + b^3 = (a+b)(a^2+b^2-ab)$
=> $(p^2+q^2)(p^4+q^4-p^2q^2)$
From eqn (1), we get :
=> $(p^2+q^2)(p^2q^2-p^2q^2)$
=> $(p^2+q^2)*0$
= 0
10) Answer (A)
If $x=\frac{a-b}{a+b}$
=> $(1-x) = 1- (\frac{a-b}{a+b})$
=> $(1-x) = \frac{2b}{a+b}$
Similarly, $(1+x) = \frac{2a}{a+b}$
Applying the same method, we get :
=> $(1-y) = \frac{2c}{b+c}$ and => $(1+y) = \frac{2b}{b+c}$
=> $(1-z) = \frac{2a}{c+a}$ and => $(1+z) = \frac{2c}{c+a}$
Putting above values in the equation : $\frac{(1-x)(1-y)(1-z)}{(1+x)(1+y)(1+z)}$
=> $\frac{(\frac{2b}{a+b})(\frac{2c}{b+c})(\frac{2a}{c+a})}{(\frac{2a}{a+b})(\frac{2b}{b+c})(\frac{2c}{c+a})}$
=> $\frac{2a*2b*2c}{2a*2b*2c}$
= 1
11) Answer (C)
$\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+\sqrt{7} b$
L.H.S. = $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}$
= $\frac{(\sqrt{7}-1)^2 – (\sqrt{7}+1)^2}{(\sqrt{7}-1)(\sqrt{7}+1)}$
= $\frac{(7+1-2\sqrt{7})-(7+1+2\sqrt{7})}{7-1}$
= $\frac{-4\sqrt{7}}{6}$
= $\frac{-2\sqrt{7}}{3}$
Now, comparing with R.H.S. $a+\sqrt{7} b$
we get,
$a=0$ and $b=\frac{-2}{3}$
12) Answer (D)
$x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
=> $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} * \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
=> $x= 5+2\sqrt{6}$ —————Eqn(1)
Now, $\frac{1}{x}=\frac{1}{5+2\sqrt{6}}$
=> $\frac{1}{x} = \frac{1}{5+2\sqrt{6}} * \frac{5-2\sqrt{6}}{5-2\sqrt{6}}$
=> $\frac{1}{x}= 5-2\sqrt{6}$ —————Eqn(2)
Now, cubing eqns (1)&(2), we get :
=> $x^3 = 125+72\sqrt{6}+150\sqrt{6}+360 = 485+222\sqrt{6}$
and $\frac{1}{x^3} = 125-72\sqrt{6}-150\sqrt{6}+360 = 485-222\sqrt{6}$
To find : $x^{3} + \frac{1}{x^{3}}$
= $485+222\sqrt{6} + 485-222\sqrt{6}$
= 970
13) Answer (D)
Expression : $\sqrt{\sqrt{\sqrt{0.00000256}}}$
= $\sqrt{\sqrt{0.0016}}$
= $\sqrt{0.04} = 0.2$
14) Answer (A)
We are given that m = -4 and n = -2
Expression : $m^3 – 3m^2 + 3m + 3n + 3n^2 + n^3$
= $(m^3 – 3m^2 + 3m – 1) + (n^3 + 3n^2 + 3n + 1)$
= $(m-1)^3 + (n+1)^3$
= $(-4-1)^3 + (-2+1)^3$
= $(-5)^3 + (-1)^3$
= $-125 – 1 = -126$
15) Answer (C)
Expression : $x+\frac{1}{x}=1$
=> $x^2 + 1 = x$ ——Eqn(1)
To find : $\frac{x^2+3x+1}{x^2+7x+1}$
= $\frac{(x^2+1) + 3x}{(x^2+1) + 7x}$
Using eqn(1),we get :
= $\frac{x + 3x}{x + 7x} = \frac{4}{8}$
= $\frac{1}{2}$
Get 125 SSC CGL Mocks – Just Rs. 199
18000+ Questions – Free SSC Study Material
16) Answer (D)
Since $\sqrt[3]{79507}$ = 43
=> $\sqrt[3]{79.507}$ = 4.3
=> $\sqrt[3]{0.079507}$ = 0.43
=> $\sqrt[3]{0.000079507}$ = 0.043
=> 4.3+0.43+0.043 = 4.773
17) Answer (D)
Let $x = 3k$ and $y = 4k$
=> $\frac{2x + 3y}{3y – 2x}$
= $\frac{6k + 12k}{12k – 6k}$
= $\frac{18}{6}$
= $\frac{3}{1}$ = 3 : 1
18) Answer (C)
Using the formula, $(x-y)^3 = x^3 – y^3 -3xy(x-y)$
=> $(m – 5n)^3 = m^3 – 125n^3 – 15mn(m-5n)$
=> $2^3 = m^3 – 125n^3 – 15mn*2$
=> $m^3 – 125n^3 – 30mn = 8$
19) Answer (A)
Expression : $x+\frac{1}{x}=2$
Squaring both sides
=> $x^2 + \frac{1}{x^2} + 2 = 4$
=> $x^2 + \frac{1}{x^2} = 2$
Cubing both sides
=> $x^6 + \frac{1}{x^6} + 3.x.\frac{1}{x}(x+\frac{1}{x}) = 8$
=> $x^6 + \frac{1}{x^6} = 8-6 = 2$
Again, squaring both sides, we get :
=> $x^{12} + \frac{1}{x^{12}} + 2 = 4$
=> $x^{12} + \frac{1}{x^{12}} = 2$
20) Answer (B)
Expression : $5x + 9y = 5$
Cubing both sides, we get :
=> $(5x + 9y)^3 = 125$
=> $125x^3 + 729y^3 + 135xy(5x+9y) = 125$
=> $125x^3 + 729y^3 + 135xy*5 = 125$
Since, $125x^{3}$ + $729y^{3} = 120$
=> $xy = \frac{5}{5*135} = \frac{1}{135}$