SSC CHSL Trigonometry Questions:
Download Top-20 Trigonometry questions for SSC CHSL exam 2020. Most important Trigonometry questions based on asked questions in previous exam papers for SSC CHSL.
Download Top-20 SSC CHSL Trigonometry Questions
Get 25 SSC CHSL Mocks – Just Rs. 149
Take a free SSC CHSL Tier-1 mock test
Download SSC CHSL Previous Papers PDF
Question 1:Â What is the value of $(1 + cotA)^{2} + (1-cotA)^{2}$ ?
a)Â $2cosec^{2}A$
b)Â $2sec^{2}A$
c)Â $1-2cosec^{2}A$
d)Â $1-2sec^{2}A$
Question 2: If cot 135° = x, then the value of x is
a) -1/√3
b) -√3
c)Â -1
d)Â -1/2
Question 3: If √$(1 – cos^2A)/cosA$ = x, then the value of x is
a)Â cotA
b)Â cosecA
c)Â tanA
d)Â secA
Question 4: What is the value of √[(1 – sinA)/(1 + sinA)]?
a)Â cosA/(1 – sinA)
b)Â cosecA/(1 + sinA)
c)Â cosA/(1 + sinA)
d)Â cosecA/(1 – sinA)
Question 5:Â If cosecA/(cosecA – 1) + cosecA/(cosecA + 1) = x, then x is
a)Â $2cosec^2A$
b)Â $2cosecA$
c)Â $2secA$
d)Â $2sec^2A$
Question 6: If cot 30° – cos 45° = x, then x is
a) √3+2
b) (√6-1)/√2
c) (√3-2√2)/√6
d) (1+√2)/2
Question 7:Â If tan2A = x, then x is
a)Â $2tanA/(1 – tan^2A)$
b)Â $(1 – tan^2A)/2tanA$
c)Â $2tanA/(1 + tan^2A)$
d)Â $(tan^2A – 1)/2tanA$
Question 8: What is the value of sin 300°?
a)Â -1/2
b)Â 2
c) 2/√3
d) -√3/2
Question 9: If √$(1 – cos^2A)$ = x, then the value of x is
a)Â cosecA
b)Â sinA
c)Â tanA
d)Â secA
Question 10:Â If cosA/(1 – sinA) = x, then the value of x is
a)Â secA – tanA
b)Â cosecA + tanA
c)Â secA + tanA
d)Â cosecA – tanA
Join Exam Preparation Telegram Group
Question 11:Â Â If $\sqrt{(sec^2A-1)}=x$, then the value of x is
a)Â cotA
b)Â tanA
c)Â cosecA
d)Â cosA
Question 12:Â What is the value of $cos^2A/(1 + sinA)$?
a)Â 1 + sinA
b)Â 1 -Â sinA
c)Â 1 Â- secA
d)Â 1 + secA
Question 13:Â If $(cotA – cosecA)^2 = x$, then the value of x is
a)Â (1 – cosA)/(1 + cosA)
b)Â (1 – sinA)/(1 + sinA)
c)Â (1 – secA)/(1 + secA)
d)Â (1 – cosecA)/(1 + cosecA)
Question 14:Â If cotA = x, then the value of x is
a) √$(sec^2A + 1)$
b) √$(cosec^2A + 1)$
c) √$(sec^2A – 1)$
d) √$(cosec^2A – 1)$
Question 15: If cos 240° = x, then value of x is
a) -1/√2
b) Â√3/2
c)Â 1/2
d)Â -1/2
Get 25 SSC CHSL Mocks – Just Rs. 149
Question 16: If 1/√(1+$tan^{2}$A) = x, then value of x is
a)Â cosA
b)Â sinA
c)Â cosecA
d)Â secA
Question 17:Â In which of the following quadrilaterals only one pair of opposite angles is supplementary?
a)Â Isosceles Trapezium
b)Â Parallelogram
c)Â Cyclic quadrilateral
d)Â Rectangle
Question 18: What is the value of √[(1 + sinA)/(1 Â- sinA)]?
a)Â secA Â- tanA
b)Â cosecA + tanA
c)Â secA + tanA
d)Â cosecA Â- tanA
Question 19:Â If (1 + sinA)/cosA + cosA/(1 + sinA) = x, then the value of x is
a)Â 2cosecA
b)Â 2$cosec^{2}$A
c)Â 2$sec^{2}$A
d)Â 2secA
Question 20: If tan 330° = x, then the value of x is
a)Â $\frac{-1}{\sqrt{3}}$
b)Â ${-\sqrt{3}}$
c)Â $\frac{-1}{2}$
d)Â $\frac{-1}{\sqrt{2}}$
18000+ Questions – Free SSC Study Material
Answers & Solutions:
1) Answer (A)
Expression : $(1 + cotA)^{2} + (1-cotA)^{2}$
= $(1+cot^2A+2cotA)+(1+cot^2A-2cotA)$
= $2+2cot^2A=2(1+cot^2A)$
$\because$ $(cosec^2A-cot^2A=1)$
= $2cosec^2A$
=> Ans – (A)
2) Answer (C)
Expression : cot 135° = x
= $cot(180-45)$
= $-cot(45)$
= $-1$
=> Ans – (C)
3) Answer (C)
Expression : $\frac{\sqrt{1-cos^2A}}{cosA}$
$\because (sin^2A+cos^2A=1)$
= $\frac{\sqrt{sin^2A}}{cosA}$
= $\frac{sinA}{cosA} = tanA$
=> Ans – (C)
4) Answer (C)
Expression : $\sqrt{[\frac{(1 – sinA)}{(1 + sinA)}}]$
Multiplying both numerator and denominator by $(\sqrt{1+sinA})$
=Â $\sqrt{[\frac{(1 – sinA)}{(1 + sinA)}}]$ $\times \sqrt{\frac{(1+sinA)}{(1+sinA)}}$
= $\sqrt{\frac{1-sin^2A}{(1+sinA)^2}} = \sqrt{\frac{cos^2A}{(1+sinA)^2}}$
= $\frac{cosA}{1+sinA}$
=> Ans – (C)
5) Answer (D)
Expression : $\frac{cosecA}{cosecA-1}+\frac{cosecA}{cosecA+1}$
= $[(\frac{1}{sinA})\div(\frac{1}{sinA}-1)]+[(\frac{1}{sinA})\div(\frac{1}{sinA}+1)]$
= $[(\frac{1}{sinA})\div(\frac{1-sinA}{sinA})]+[(\frac{1}{sinA})\div(\frac{1+sinA}{sinA})]$
= $[(\frac{1}{sinA}) \times (\frac{sinA}{1-sinA})]+[(\frac{1}{sinA}) \times (\frac{sinA}{1+sinA})]$
= $(\frac{1}{1-sinA})+(\frac{1}{1+sinA})$
= $\frac{(1+sinA)+(1-sinA)}{(1+sinA)(1-sinA)} = \frac{2}{1-sin^2A}$
= $\frac{2}{cos^2A} = 2sec^2A$
=> Ans – (D)
6) Answer (B)
Expression : cot 30° – cos 45° = x
= $\sqrt{3} – \frac{1}{\sqrt{2}}$
= $\frac{\sqrt{6}-1}{\sqrt{2}}$
=> Ans – (B)
7) Answer (A)
Expression : $tan(2A)$
$\because tan(A+B)=\frac{tanA+tanB}{1-tanAtanB}$
Replacing B by A
=> $tan(A+A)=\frac{tanA+tanA}{1-tanAtanA}$
=> $tan(2A)=\frac{2tanA}{1-tan^2A}$
=> Ans – (A)
8) Answer (D)
Expression : sin 300°
= $sin(360-60)$
= $-sin(60)$
= $\frac{-\sqrt{3}}{2}$
=> Ans – (D)
9) Answer (B)
Expression : $\sqrt{1-cos^2A}$
$\because (sin^2A+cos^2A=1)$
= $\sqrt{sin^2A}=sinA$
=> Ans – (B)
10) Answer (C)
Expression : cosA/(1 – sinA) = x
Multiplying both numerator and denominator by $(1+sinA)$
= $\frac{cosA}{1-sinA} \times \frac{(1+sinA)}{(1+sinA)}$
= $\frac{cosA(1+sinA)}{1-sin^2A} = \frac{cosA(1+sinA)}{cos^2A}$
= $\frac{1+sinA}{cosA} = (\frac{1}{cosA}+\frac{sinA}{cosA})$
= $secA+tanA$
=> Ans – (C)
11) Answer (B)
Expression : $\sqrt{(sec^2A-1)}=x$
$\because (sec^2A-tan^2A=1)$
= $\sqrt{tan^2A} = tanA$
=> Ans – (B)
12) Answer (B)
Expression : $cos^2A/(1 + sinA)$
Multiplying both numerator and denominator by $(1-sinA)$
= $\frac{cos^2A}{1+sinA} \times \frac{(1-sinA)}{(1-sinA)}$
= $\frac{cos^2A(1-sinA)}{1-sin^2A} = \frac{cos^2A(1-sinA)}{cos^2A}$
= $1-sinA$
=> Ans – (B)
13) Answer (A)
Expression : $(cotA – cosecA)^2 = x$
= $(\frac{cosA}{sinA}-\frac{1}{sinA})^2$
= $(\frac{cosA-1}{sinA})^2$
= $\frac{(1-cosA)^2}{sin^2A} = \frac{(1-cosA)^2}{1-cos^2A}$
= $\frac{(1-cosA)^2}{(1-cosA)(1+cosA)}$
= $\frac{1-cosA}{1+cosA}$
=> Ans – (A)
14) Answer (D)
We know that, $cosec^2A-cot^2A=1$
=> $cot^2A=cosec^2A-1$
=> $cotA=\sqrt{cosec^2A-1}$
=> Ans – (D)
15) Answer (D)
Expression : cos 240° = x
= $cos(180+60)$
= $-cos(60)$
= $\frac{-1}{2}$
=> Ans – (D)
Get 25 SSC CHSL Mocks – Just Rs. 149
16) Answer (A)
Expression : 1/√(1+$tan^{2}$A) = x
$\because (sec^2A-tan^2A=1)$
= $\frac{1}{\sqrt{sec^2A}}$
= $\frac{1}{secA} = cosA$
=> Ans – (A)
17) Answer (C)
In rectangle, all angles are 90° and in a parallelogram, adjacent angles are supplementary while in a cyclic quadrilateral only one pair of opposite angles is supplementary.
=> Ans – (C)
18) Answer (C)
Expression : $\sqrt{[\frac{(1 + sinA)}{(1 – sinA)}}]$
Multiplying both numerator and denominator by $(\sqrt{1+sinA})$
=Â $\sqrt{[\frac{(1 + sinA)}{(1 – sinA)}}]$ $\times \sqrt{\frac{(1+sinA)}{(1+sinA)}}$
= $\sqrt{\frac{(1+sinA)^2}{1-sin^2A}} = \sqrt{\frac{(1+sinA)^2}{cos^2A}}$
= $\frac{1+sinA}{cosA} = (\frac{1}{cosA}+\frac{sinA}{cosA})$
= $secA+tanA$
=> Ans – (C)
19) Answer (D)
Expression : $\frac{(1+sinA)}{cosA}+\frac{cosA}{(1+sinA)}$
=Â $\frac{(1+sinA)^2+(cosA)^2}{cosA(1+sinA)}$
= $\frac{(1+2sinA+sin^2A)+cos^2A}{cosA(1+sinA)}$
= $\frac{1+2sinA+1}{cosA(1+sinA)}$ Â Â $[\because sin^2A+cos^2A=1]$
= $\frac{2+2sinA}{cosA(1+sinA)} = \frac{2(1+sinA)}{cosA(1+sinA)}$
= $\frac{2}{cosA} = 2secA$
=> Ans – (D)
20) Answer (A)
Expression : tan 330° = x
= $tan(360-30)$
= $-tan(30)$
= $\frac{-1}{\sqrt{3}}$
=> Ans – (A)