Syllogism Questions For IBPS SO

0
359
syllogism questions for ibps so
syllogism questions for ibps so

Syllogism Questions For IBPS SO

Download important Syllogism PDF based on previously asked questions in IBPS Clerk and other Banking Exams. Practice Syllogism for IBPS Clerk Exam.

Download Syllogism Questions For IBPS SO

5 IBPS SO Mocks For Rs. 117

Instructions

In the following questions two equations numbered I and II are given. You have to solve both the equations and
Give answer a: if x > y
Give answer b: if x ≥ y
Give answer c: if x < y
Give answer d: if x ≤ y
Give answer e: if x = y or the relationship cannot be established.

Question 1: I.  $x^{2}-3x-88=0$
II. $y^{2}+8y-48=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 2: I.  $5x^{2}+29x+20=0$
II. $25y^{2}+25y+6=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 3: I.  $2x^{2}-11x+12=0$
II. $2y^{2}-19y+44=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Take IBPS SO Mock Test

Free Banking Study Material – 15000 Solved Questions

Question 4: I.  $3x^{2}+10x+8=0$
II. $3y^{2}+7y+4=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Question 5: I.  $2x^{2}+21x+10=0$
II. $3y^{2}+13y+14=0$

a) if x > y

b) if x ≥ y

c) if x < y

d) if x ≤ y

e) if x = y or the relationship cannot be established.

Instructions

In each of these questions two equations numbered I and II are given. You have to solve both the equations and –
Give answer a: if x < y
Give answer b: if x ≤ y
Give answer c: if x > y
Give answer d: if x ≥ y
Give answer e: if x = y or the relationship cannot be established.

Question 6: I.  $x^{2}+13x+42=0$
II. $y^{2} +19y+90=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Question 7: I.   $x^{2}-15x+56=0$
II. $y^{2} -23y+132=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Question 8: I. $x^{2}+7x+12=0$
II. $y^{2} +6y+8=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Question 9: I. $x^{2}-22x+120=0$
II. $y^{2} -26y+168=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Get 790+ Mocks For Rs,100

Question 10: I.$x^{2}+12x+32=0$
II. $y^{2} +17y+72=0$

a) if x < y

b) if x ≤ y

c) if x > y

d) if x ≥ y

e) if x = y or the relationship cannot be established.

Instructions

In each of the following questions, two equations I and II have been given.
Solve these questions and answer

(1)if x < y
(2) if x ≤ y

(3) if x = y or the relation cannot be established

(4) if ≥ y

(5) if x > y

Question 11: I. $30 x^{2} + 11x + 1 = 0$
II. $42 y^{2} + 13y + 1 = 0$

a) if x < y

b) if x ≤ y

c) if x = y or the relation cannot be established

d)  if ≥ y

e) if x > y

Question 12: I. $x^{2}- x – \sqrt{2}x + \sqrt{2}=0$
II.$y^{2}-3y+2=0$

a) if x < y

b)  if x ≤ y

c) if x = y or the relation cannot be established

d) if ≥ y

e) if x > y

200+ Banking Previous Papers (Download PDF)

Question 13: I.$x^{2}-2x-\sqrt{5}x+2\sqrt{5}=0$
II.$y^{2}-\sqrt{3}y-\sqrt{2}y+\sqrt{6}=0$

a) if x < y

b)  if x ≤ y

c) if x = y or the relation cannot be established

d) if ≥ y

e) if x > y

Question 14: I.$ x^{2}+12x+36=0$
II.$y^{2}=16$

a) if x < y

b) if x ≤ y

c) if x = y or the relation cannot be established

d)  if ≥ y

e) if x > y

Question 15: I.$9x^{2}+3x-2=0$
II.$8y^{2}+6y+1=0$

a) if x < y

b)  if x ≤ y

c) if x = y or the relation cannot be established

d) if ≥ y

e) if x > y

Free Banking Study Material (15000 Solved Questions)

Answers & Solutions:

1) Answer (E)

I.$x^{2} – 3x – 88 = 0$

=> $x^2 + 8x – 11x – 88 = 0$

=> $x (x + 8) – 11 (x + 8) = 0$

=> $(x + 8) (x – 11) = 0$

=> $x = -8 , 11$

II.$y^{2} + 8y – 48 = 0$

=> $y^2 + 12y – 4y – 48 = 0$

=> $y (y + 12) – 4 (y + 12) = 0$

=> $(y + 12) (y – 4) = 0$

=> $y = -12 , 4$

$\therefore$ No relation can be established.

5 IBPS SO Mocks For Rs. 117

2) Answer (C)

I.$5x^{2} + 29x + 20 = 0$

=> $5x^2 + 25x + 4x + 20 = 0$

=> $5x (x + 5) + 4 (x + 5) = 0$

=> $(x + 5) (5x + 4) = 0$

=> $x = -5 , \frac{-4}{5}$

II.$25y^{2} + 25y + 6 = 0$

=> $25y^2 + 10y + 15y + 6 = 0$

=> $5y (5y + 2) + 3 (5y + 2) = 0$

=> $(5y + 3) (5y + 2) = 0$

=> $y = \frac{-3}{5} , \frac{-2}{5}$

Therefore $x < y$

3) Answer (D)

I.$2x^{2} – 11x + 12 = 0$

=> $2x^2 – 8x – 3x + 12 = 0$

=> $2x (x – 4) – 3 (x – 4) = 0$

=> $(x – 4) (2x – 3) = 0$

=> $x = 4 , \frac{3}{2}$

II.$2y^{2} – 19y + 44 = 0$

=> $2y^2 – 8y – 11y + 44 = 0$

=> $2y (y – 4) – 11 (y – 4) = 0$

=> $(y – 4) (2y – 11) = 0$

=> $y = 4 , \frac{11}{2}$

$\therefore x \leq y$

4) Answer (D)

I.$3x^{2} + 10x + 8 = 0$

=> $3x^2 + 6x + 4x + 8 = 0$

=> $3x (x + 2) + 4 (x + 2) = 0$

=> $(x + 2) (3x + 4) = 0$

=> $x = -2 , \frac{-4}{3}$

II.$3y^{2} + 7y + 4 = 0$

=> $3y^2 + 3y + 4y + 4 = 0$

=> $3y (y + 1) + 4 (y + 1) = 0$

=> $(y + 1) (3y + 4) = 0$

=> $y = -1 , \frac{-4}{3}$

$\therefore x \leq y$

5) Answer (E)

I.$2x^{2} + 21x + 10 = 0$

=> $2x^2 + x + 20x + 10 = 0$

=> $x (2x + 1) + 10 (2x + 1) = 0$

=> $(x + 10) (2x + 1) = 0$

=> $x = -10 , \frac{-1}{2}$

II.$3y^{2} + 13y + 14 = 0$

=> $3y^2 + 6y + 7y + 14 = 0$

=> $3y (y + 2) + 7 (y + 2) = 0$

=> $(y + 2) (3y + 7) = 0$

=> $y = -2 , \frac{-7}{3}$

$\therefore$ No relation can be established.

6) Answer (C)

I.$x^{2} + 13x + 42 = 0$

=> $x^2 + 7x + 6x + 42 = 0$

=> $x (x + 7) + 6 (x + 7) = 0$

=> $(x + 7) (x + 6) = 0$

=> $x = -7 , -6$

II.$y^{2} + 19y + 90 = 0$

=> $y^2 + 9y + 10y + 90 = 0$

=> $y (y + 9) + 10 (y + 9) = 0$

=> $(y + 9) (y + 10) = 0$

=> $y = -9 , -10$

$\therefore x > y$

7) Answer (A)

I.$x^{2} – 15x + 56 = 0$

=> $x^2 – 8x – 7x + 56 = 0$

=> $x (x – 8) – 7 (x – 8) = 0$

=> $(x – 8) (x – 7) = 0$

=> $x = 8 , 7$

II.$y^{2} – 23y + 132 = 0$

=> $y^2 – 11y – 12y + 132 = 0$

=> $y (y – 11) – 12 (y – 11) = 0$

=> $(y – 11) (y – 12) = 0$

=> $y = 11 , 12$

$\therefore x < y$

8) Answer (E)

I.$x^{2} + 7x + 12 = 0$

=> $x^2 + 3x + 4x + 12 = 0$

=> $x (x + 3) + 4 (x + 3) = 0$

=> $(x + 3) (x + 4) = 0$

=> $x = -3 , -4$

II.$y^{2} + 6y + 8 = 0$

=> $y^2 + 4y + 2y + 8 = 0$

=> $y (y + 4) + 2 (y + 4) = 0$

=> $(y + 4) (y + 2) = 0$

=> $y = -4 , -2$

Because $-2 > -4$ and $-3 > -4$

Therefore, no relation can be established.

9) Answer (B)

I.$x^{2} – 22x + 120 = 0$

=> $x^2 – 10x – 12x + 120 = 0$

=> $x (x – 10) – 12 (x – 10) = 0$

=> $(x – 10) (x – 12) = 0$

=> $x = 10 , 12$

II.$y^{2} – 26y + 168 = 0$

=> $y^2 – 12y – 14y + 168 = 0$

=> $y (y – 12) – 14 (y – 12) = 0$

=> $(y – 12) (y – 14) = 0$

=> $y = 12 , 14$

$\therefore x \leq y$

10) Answer (D)

I.$x^{2} + 12x + 32 = 0$

=> $x^2 + 8x + 4x + 32 = 0$

=> $x (x + 8) + 4 (x + 8) = 0$

=> $(x + 8) (x + 4) = 0$

=> $x = -8 , -4$

II.$y^{2} + 17y + 72 = 0$

=> $y^2 + 9y + 8y + 72 = 0$

=> $y (y + 9) + 8 (y + 9) = 0$

=> $(y + 9) (y + 8) = 0$

=> $y = -9 , -8$

$\therefore x \geq y$

11) Answer (B)

Statement I : $30 x^{2} + 11x + 1 = 0$

=> $30x^2 + 6x + 5x + 1 = 0$

=> $6x (5x + 1) + 1 (5x + 1) = 0$

=> $(6x + 1) (5x + 1) = 0$

=> $x = \frac{-1}{6} , \frac{-1}{5}$

Statement II : $42 y^{2} + 13y + 1 = 0$

=> $42y^2 + 7y + 6y + 1 = 0$

=> $7y (6y + 1) + 1 (6y + 1) = 0$

=> $(7y + 1) (6y + 1) = 0$

=> $y = \frac{-1}{7} , \frac{-1}{6}$

$\therefore$ $x \leq y$

12) Answer (C)

I. $x^{2}- x – \sqrt{2}x + \sqrt{2}=0$

=> $x (x – 1) – \sqrt{2} (x – 1) = 0$

=> $(x – \sqrt{2}) (x – 1) = 0$

=> $x = \sqrt{2} , 1$

II. $y^{2}-3y+2=0$

=> $y^2 – 2y – y + 2 = 0$

=> $y (y – 2) – 1 (y – 2) = 0$

=> $(y – 2) (y – 1) = 0$

=> $y = 1 , 2$

$\therefore$ No relation established.

13) Answer (E)

Statement I : $x^{2}-2x-\sqrt{5}x+2\sqrt{5}=0$

=> $x (x – 2) – \sqrt{5} (x – 2) = 0$

=> $(x – \sqrt{5}) (x – 2) = 0$

=> $x = \sqrt{5} , 2$

Statement II : $y^{2}-\sqrt{3}y-\sqrt{2}y+\sqrt{6}=0$

=> $y (y – \sqrt{3}) – \sqrt{2} (y – \sqrt{3}) = 0$

=> $(y – \sqrt{2}) (y – \sqrt{3}) = 0$

=> $y = \sqrt{2} , \sqrt{3}$

$\therefore$ $x > y$

14) Answer (A)

Statement 1 : $x^2 + 12x + 36 = 0$

=> $x^2 + 2.x.6 + 6^2 = 0$

=> $(x + 6)^2 = 0$

=> $x = -6$

Statement II : $y^2 = 16$

=> $(y)^2 = (\pm 4)^2$

=> $y = \pm 4$

$\therefore$ $x < y$

15) Answer (C)

Statement I : $9x^{2}+3x-2=0$

=> $9x^2 + 6x – 3x – 2 = 0$

=> $3x (3x + 2) – 1 (3x + 2) = 0$

=> $(3x – 1) (3x + 2) = 0$

=> $x = \frac{1}{3} , \frac{-2}{3}$

Statement II : $8y^{2}+6y+1=0$

=> $8y^2 + 4y + 2y + 1 = 0$

=> $4y (2y + 1) + 1 (2y + 1) = 0$

=> $(4y + 1) (2y + 1) = 0$

=> $y = \frac{-1}{4} , \frac{-1}{2}$

$\therefore$ No relation can be established.

Download High Rated Free Preparation App

Daily Free Banking Online Test

LEAVE A REPLY

Please enter your comment!
Please enter your name here