cracku

Maths Questions for TISSNET

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature without the permission of cracku.in, application for which shall be made to support@cracku.in

Instructions
For the following questions answer them individually

Question 1

How many pairs of positive integers m, n satisfy $1 / m+4 / n=1 / 12$, where n is an odd integer less than 60 ?

A 6

B 4

C 7

D 5

E 3
Answer: E

Explanation:

$1 / m+4 / n=1 / 12$
So, $1 / m=1 / 12-4 / n$
So, $m=12 n /(n-48)$

Since m is positive, n should be greater than 48
Also, since n is an odd number, it can take only $49,51,53,55,57$ and 59
If $n=49,51,57$ then m is an integer, else it is not an integer
So, there are 3 pairs of values for which the equation is satisfied

Question 2

Let T be the set of integers $\{3,11,19,27, \ldots . .451,459,467\}$ and S be a subset of T such that the sum of no two elements of S is 470 . The maximum possible number of elements in S is

A 32

B 28

C 29

D 30

Answer: D

Explanation:

No. of terms in series $T, 3+(n-1) * 8=467$ i.e. $n=59$.
Now S will have atleast have of 59 terms i.e 29 .
Also the sum of 29th term and 30th term is less than 470.
Hence, maximum possible elements in S is 30 .

Question 3

Suppose n is an integer such that the sum of digits on n is 2 , and $10^{10}<n<10^{11}$. The number of different values of n is

A 11

B 10

C 9

D 8
Answer: A

Explanation:

The sum of digits should be 2. The possibilities are $1000000001,1000000010,10000000100$,..these 10 cases . Also additional 1 case where 20000000000 . Hence option A .

XAT Previous Papers

Question 4

If $a / b=1 / 3, b / c=2, c / d=1 / 2, d / e=3$ and $e / f=1 / 4$, then what is the value of $a b c /$ def ?

A $3 / 8$

B 27/8

C $3 / 4$

D 27/4

E 1/4
Answer: A

Explanation:

$a / d=a / b * b / c * c / d=1 / 3 * 2 * 1 / 2=1 / 3$
Similarly, b/e and c/f are 3 and 3/8 respectively.
$\mathrm{b} / \mathrm{e}=\mathrm{b} / \mathrm{c}^{*} \mathrm{c} / \mathrm{d} * \mathrm{~d} / \mathrm{e}=3$
$c / f=c / d * d / e * e / f=3 / 8$
=> Value of $\mathrm{abc} /$ def $=1 / 3$ * 3 * $3 / 8=3 / 8$

Question 5

What are the values of x and y that satisfy both the equations?
$2^{0.7 x} * 3^{-1.25 y}=8 \sqrt{6} / 27$
$4^{0.3 x} * 9^{0.2 y}=8 * 81^{1 / 5}$

A $x=2, y=5$

B $x=2.5, y=6$

C $x=3, y=5$

D $x=3, y=4$

E $x=5, y=2$
Answer: E

Explanation:

$2^{0.7 x} * 3^{-1.25 y}=8 \sqrt{6} / 27=>2^{0.7 x} * 3^{-}$

=> $-1.25 y=-2.5=>y=2$
$4^{0.3 x} * 9^{0.2 y}=8 * 81^{1 / 5}=>2^{0.6 x} * 3^{0.4 y}=2^{3} * 3^{0.8}$
=> $0.6 x=3=>x=5$
=> $0.4 y=0.8=>y=2$
$=>(5,2)$ is the solution.

Question 6

If $\mathbf{R}=\left(30^{65}-29^{65}\right) /\left(30^{64}+29^{64}\right)$,then

A $0<R \leq 0.1$
B $\quad 0.1<R \leq 0.5$

C $0.5<R \leq 1.0$

D $\quad R>1.0$
Answer: D

Explanation:

$$
\binom{\left(30^{65}-29^{65}\right)}{\left(30^{64}+29^{64}\right)}\left((30-29) * \begin{array}{c}
\left(30^{64}+30^{63} * 29+\ldots+29^{64}\right) \\
\left(30^{64}+29^{64}\right)
\end{array},\right. \text { which is greater than T. Hence option D. }
$$

XAT Free Mock Test

Question 7

If $\mathbf{x}=\left(16^{3}+17^{3}+18^{3}+19^{3}\right)$, then \mathbf{x} divided by 70 leaves a remainder of

A 0

B 1
C 69

D 35
Answer: A

Explanation:

We know that $\mathrm{x}=16^{3}+17^{3}+18^{3}+19^{3}=\left(16^{3}+19^{3}\right)+\left(17^{3}+18^{3}\right)$
$=(16+19)\left(16^{2}-16 * 19+19^{2}\right)+(17+18)\left(17^{2}-17 * 18+18^{2}\right)=35 \times$ odd $+35 \times$ odd $=35 \times$ even $=35 \times(2 \mathrm{k})$
=> $\mathrm{x}=70 \mathrm{k}$
=> Remainder when divided by 70 is 0 .

Question 8

Let $n!=1 * 2 * 3 * \ldots * n$ for integer $n \geq 1$.
If $p=1!+(2 * 2!)+(3 * 3!)+\ldots+(10 * 10$! $)$, then $p+2$ when divided by 11 ! leaves a remainder of

A 10
B 0
C 7

D 1
Answer: D

Explanation:

According to given condiiton we have $p=(1 \times 1!)+(2 \times 2!)+(3 \times 3!)+(4 \times 4!)+\ldots+(10 \times 10!)$. So $n \times n!=[(n+1)-1] \times n!=(n+1)!-n!$. So equation becomes $p=2!-1!+3!-2!+4!-3!+5!-4!+\ldots+11!-10$!. So $p=11!-1!=11!-1 . p+2=11!+1$. So when it is divided by 11 ! gives a remainder of 1 . Hence, option 4.

A 3
B $(\sqrt{13}-1) / 2$
C $(\sqrt{13}+1) / 2$
D $\sqrt{13}$
Answer: C

Explanation:

$x=\sqrt{4+\sqrt{4-\sqrt{4+\sqrt{4-~ t o ~ i n f i n i t y ~}}}}$
=> $x=\sqrt{4+\sqrt{4-x}}$
$\Rightarrow x^{2}=4+\sqrt{4-x}$
$=>x^{4}+16-8 x^{2}=4-x$
=> $x^{4}-8 x^{2}+x+12=0$

On substituting options, we can see that option C satisfies the equation.

Download XAT Syllabus PDF

Question 10

Let $\mathrm{N}=1421$ * 1423 * 1425 . What is the remainder when N is divided by 12 ?

A 0

B 9

C 3

D 6
Answer: C

Explanation:
The numbers 1421,1423 and 1425 when divided by 12 give remainder 5,7 and 9 respectively. $5 * 7 * 9 \bmod 12=11 * 9 \bmod 12=99 \bmod 12=3$

SNAP Previous Papers (Download PDF)
Closest to actual SNAP
5 National level SNAP mocks
Detailed mock analysis and solutions with percentile
Access till Jan 102020

MAT Free Solved Previous Papers

