cracku

Elementary Statistics Questions for RRB Group-D PDF

Instructions

For the following questions answer them individually

Question 1

Four integers w, x, y, z are selected at random from 0 to 1000 numbers both inclusive. The probability that $w z-x y$ is even is

A $\quad \begin{array}{r}16 \\ 16\end{array}$

B $\quad 5$

C $\quad{ }_{16}$
D $\begin{gathered}5 \\ 16\end{gathered}$
Answer: B

Explanation:

wz-xy will be even only when both wz and $x y$ are even or odd
The probability of $w z$ being odd is $\frac{1}{2} 2 \frac{1}{2}$
Probability for $w z-x y$ being odd is $\left({ }_{4}^{1}\right) 2$
Similarly, the probability of wz to be even is 1-probability of being odd= $={ }_{4}^{3}$
Probability for wz -xy being even is $\left({ }_{4}^{3}\right)_{2}$
Total probability $=16+16$
5
$=8$
B is the correct answer
Question 2

$3 \quad 2 \quad 1$

x and y are integers such that $x+y=12$. What is the sum of all such integral values of y ?

Answer:1152

Explanation:

$3 \quad 2 \quad 1$
$x+y=12$

$\Rightarrow \quad$| $2 x+3 y$ |
| :---: |
| $\quad x y \quad$ |$=12$

$\Rightarrow 24 x+36 y=x y$
$\Rightarrow 24 x-x y+36 y=0$
This can be expressed as
$\Rightarrow 24 x-x y+36 y+(36 \times 24)-(36 \times 24)=0$
$\Rightarrow x(24-y)-36(24-y)+(36 \times 24)=0$
$\Rightarrow(x-36)(24-y)=-864$
For the integral values of $y,(24-y)$ must be an integer as well.
This means that $24-y$ will be one of the factors of 864 .
Now, let us consider a case.
2 is a factor of 864. For $24-\mathrm{y}$ to be equal to $2, \mathrm{y}=22$
-2 is also a factor of 864 . For $24-y$ to be equal to $-2, y=26$
We know that $864=2^{5} \times 3^{3}$

Number of factors of $864=6 \times 4=24$
We need to consider that 864 has 24 positive and 24 negative factors.
Thus, the sum of negative and non-negative factors of $864=0$
Number of negative and non-negative factors $=24+24=48$
Thus, the sum of values of $y=24 \times 48=1152$

Question 3

If $f(x+2)=f(x)+f(x+1)$ for all positive integers \mathbf{x}, and $f(11)=91, f(15)=617$, then $f(10)$ equals

Answer:54

Explanation:

$f(x+2)=f(x)+f(x 丹 1)$
As we can see, the value of a term is the sum of the 2 terms preceding it.
It has been given that $f(11)=91$ and $f(15)=617$.
We have to find the value of $f(10)$.
Let $f(10)=\mathrm{b}$
$f(12)=\mathrm{b}+91$
$f(13)=91+b+91=182+b$
$f(14)=182+\mathrm{b}+91+\mathrm{b}=273+2 \mathrm{~b}$
$f(15)=273+2 b+182+b=455+3 b$
It has been given that $455+3 b=617$
$3 b=162$
$=>b=54$

Therefore, 54 is the correct answer.

RRB Group-D Previous Papers (download PDF)

Question 4

$|7 x-5|<16$ and $|16 y+11|<37$. If x and y are integers then find the maximum value of $|x+7| *|y-5|$

A 63
B 42

C 81

D None of These
Answer: A

Explanation:

$|7 x-5|<16$
Therefore, $-16<7 x-5<16$
$=>-11<7 x<21$
$=>{ }_{7}^{-11}<x<3$
Thus, the maximum value of $|x+7|$ is when $x=2$.
Thus, the maximum value of $|x+7|$ is 9
$|16 y+11|<37$
Hence, $-37<16 y+11<37$
$=>-48<16 y<37$
$=>-3<y<16$

Hence, the maximum value of $|y-5|$ will be when $y=-2$
Thus, the maximum value of $|y-5|$ is 7
Therefore, the maximum value of $|x+7| *|y-5|$ is $9 * 7=63$
Hence, option A is the correct answer.

Question 5

The arithmetic mean of 9 distinct integers is 87 . If none of the numbers is more than $\mathbf{1 0 0}$ and the average of the smallest five numbers is 78 , find the minimum value of the sixth number.

Answer:96

Explanation:

If the average of 9 numbers is 87 , then the sum of these 9 distinct numbers will be $9 \times 87=783$
Let the numbers be a1, a2, a3,a9 where a9> a8> ...a1.
So, $a 1+a 2+a 3+a 4+a 5=78 \times 5=390$
Smallest value of a5 can be 80 when a1, a2, a3, a4, and a5 are $76,77,78,79,80$.
This means that a6 >80.
Now, the sum of the rest of the four numbers is $738-390=393$
For a6 to be min, a7, a8, a9 must be max.
$=>a 6+98+99+100=393$ or a6 $=96$.
Thus, 96 is the correct answer.

Question 6

If f, g, h are all positive integers and $f+g+h=24$, then what is the maximum value of $(f-4)(g-2)(h-$
6) provided (f-4), (g-2), and (h-6) are positive integers?

Answer: 64

Explanation:

If $f+g+h=24$
Then $(f-4)+(g-2)+(h-6)=12$
Maximum value of $(f-4)(g-2)(h-6)$ is obtained when each of the three terms are equal
$f-4=g-2=h-6=4$
Therefore, the required maximum value is $4 * 4 * 4=64$.

20 RRB Group-D Mocks - Just Rs. 149

Question 7

The sum of five integers is 5 . What is the minimum value of the sum of reciprocal of the five numbers?

A $-45 / 7$

B $-35 / 9$

C 5
D -2

E none of these

Answer: B

Explanation:

Let the five integers be a, b, c, d and e. Given, $a+b+c+d+e=5$
We have to find the minimum value of ${ }_{a}^{1}+\frac{1}{b}+\stackrel{1}{c}+{ }_{d}+{ }_{e}^{1}$
The above equation would be minimum if its value is negative and magnitude is maximum.
This occurs when $a=b=c=d=-1$ and $e=9$
Thus, the minimum value is $-1+-1+-1+-1+1 / 9=-35 / 9$

Question 8

For two positive integers a and b define the function $h(a, b)$:as the greatest common factor (G.C.F) of a, b. Let A be a set of n positive integers. $G(A)$, the GCF of the elements of set A is computed by repeatedly using the function h.
The minimum number of times h is required to be used to compute G is:

A $1 / 2 \mathrm{n}$

B $(\mathrm{n}-1)$
C n

D None of these
Answer: B

Explanation:

Let p and q be any two elements of the set A .
For the computation of the GCF of elements of the set A, we can replace both p and q by just the $G C F(p, q)$ and the result is unchanged.

So, for every application of the function h, we are reducing the number of elements of the set A by 1 . (In this case two numbers p and q are replaced by one number $\operatorname{GCF}(p, q)$).
Expanding this concept further, the minimum number of times the function h should be called is $n-1$

Question 9

Find $b-a$ if the arithmetic mean of ordered set of integers $S=\{5, a, 13,16, b, 24\}$ is $\mathbf{1 4}$?

A 8

B 10

C 12

D Cannot be determined
Answer:

Explanation:

The arithmetic mean of the numbers is the average of the numbers.
Hence, from the given information, we know that the sum of all the numbers is $14 * 6=84$. So, $a+b=14 * 6-58=26$.
From the set ordering, 'b' can be from 17-21 with 'a' correspondingly being 9-5. Hence, answer cannot be determined.

RRB Group-D Free Mock TestsRRB Group-D Free Mock Tests
 Question 10

Find $b-a$ if the arithmetic mean of ordered set of non-repeating integers $S=\{8, a, 11,14,17,21, b, 24\}$ is 16?

A 13

B 14

C 16
D Can't be determined
Answer: A

Explanation:

Downloaded from cracku.in

RRB Group-D Previous Papers (download PDF)

20 RRB Group-D Mocks - Just Rs. 149
RRB Group-D Free Mock TestsRRB Group-D Free Mock Tests

RRB NTPC Previous Papers (Download PDF)

Daily Free RRB Online Tesrt

770 Mocks (Cracku Pass) - Just Rs. 199
100+ Free Online GK Tests

RRB Free Videos (You Tube Channel)

RRB General Science Notes(Download Pdf)
RRB GK Material (Download Pdf)
Get Free Study Material \& Updates-Whatsapp "Updates" to 7661025557

Latest Job Updates on Telegram - Join here

