cracku

SSC CGL Problems On Triangles

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature without the permission of cracku.in, application for which shall be made to support@cracku.in

Instructions

For the following questions answer them individually

Question 1

In a $\triangle A B C, D$ and E are two points on sides $A B$ and $A C$ such that $D E$ is parallel to $B C$ and $A D: D B=2: 1$. If $A E=8 \mathrm{~cm}$, then find the length of $A C$.

A 12 cm

B 10 cm

C 16 cm
D 20 cm
Answer: A

Explanation:

$A D \quad A E$
$D B=E C$
$A D \quad 2$
Here, $D B=1$ and $A E=8 \mathrm{~cm}$

$$
\begin{aligned}
& 2 \quad 8 \\
& \Rightarrow 1=E C \\
& \Rightarrow E C=4 \mathrm{~cm} \\
& \text { Here, } \mathrm{AC}=\mathrm{AE}+\mathrm{EC}=4+8=12 \mathrm{~cm}
\end{aligned}
$$

Question 2
In a $\triangle A B C$, Points D and E are on sides $A B$ and $A C$ such that $D E$ is parallel to $B C$ and $A D: D B=3: 1$ and $A E=18 \mathrm{~cm}$. Then find $A C$.

A 26 cm

B $\quad 24 \mathrm{~cm}$

C 28 cm

D 32 cm
Answer: B

Explanation:

Given, $D E$ is parallel to $B C$.
$A D \quad A E$
Then, $D B=E C$
Here, $\begin{array}{r}A D=3 \\ D B \neq 1\end{array}$
$\mathrm{AE}=18 \mathrm{~cm}$
318
$1=E C$
$\Rightarrow \mathrm{EC}=6 \mathrm{~cm}$
$A C=A E+E C=6+18=24 \mathrm{~cm}$

Question 3

In a $\triangle A B C$, points D and E are on the sides of $A B$ and $A C$ respectively such that $D E$ is parallel to $B C$ and $A D: A B=2: 5$ and $A E=4 \mathrm{~cm}$. Then find $A C$.

A 10 cm
B 14 cm

C $\quad 12 \mathrm{~cm}$

D 9 cm
Answer: B

Explanation:

Given, $D E$ is parallel to $B C$.
$A D \quad A E$
Then, $D B=E C$

$$
A D \quad 2
$$

Here, $D B=5$
$\mathrm{AE}=4 \mathrm{~cm}$
2
$5=E C$
$\Rightarrow \mathrm{EC}=10 \mathrm{~cm}$
$A C=A E+E C=4+10=14 \mathrm{~cm}$

SSC CGL Previous Papers (DOWNLOAD PDF)

Question 4

The coordinates of the vertices of a right-angled triangle are $A(6,2), B(8,0)$ and $C(2,-2)$. The coordinates of the orthocentre of triangle PQR are

A $(2,-2)$
B $(2,1)$

C $(6,2)$
D $(8,0)$

Answer: C

Explanation:

Given that the coordinates of a right-angled triangle are $A(6,2), B(8,0)$ and $C(2,-2)$.
We know that the distance between two points $(a, b) \&(c, d)$ is
$\mathrm{D}=\sqrt{(a-c)^{2}+(b-d)^{2}}$
$\mathrm{AB}=2 \sqrt{2}$ units; $\mathrm{BC}=2 \sqrt{10} ; \mathrm{AC}=4 \sqrt{2}$
Now, $A B^{2}+A C^{2}=B C^{2}$
Therefore, angle A is right angled.
Since it is a right angled triangle, the 2 sides adjacent to the right angle will be altitudes. The third altitude must meet at the vertex at which these 2 sides meet.
Hence, the vertex that contains the right angle is the orthocentre. From the points given, we can clearly see that $(6,2)$ is the orthocentre. Option C is the right answer,

Question 5

find the area of an equilateral triangle if the height of the triangle is $\mathbf{2 4} \mathbf{~ c m}$.

A $192 \sqrt{3} \mathrm{~cm}^{2}$
B $175 \sqrt{3} \mathrm{~cm}^{2}$
C $178 \sqrt{3} \mathrm{~cm}^{2}$
D $164 \sqrt{3} \mathrm{~cm}^{2}$
Answer: A

Explanation:

Given,
$A D=24 \mathrm{~cm}$ and $A B C$ is an equilateral triangle

In an equilateral triangle all the angles are equal to 60°
In $\triangle \mathrm{ADC}$
$=>\tan \angle A C D=\stackrel{A D}{D C}$
$=>\tan 60^{\circ}={ }_{D C}^{24}$
$\Rightarrow D C=\sqrt[24]{3}=8 \sqrt{3}$
$=>B C=2 * D C=16 \sqrt{3}$
Area of $\triangle \mathrm{ABC}={ }_{4}^{\sqrt{3}} *$ side 2
$=\stackrel{\sqrt{3}}{4} *(16 \sqrt{3})^{2}$
$=192 \sqrt{3} \mathrm{~cm}^{2}$
Question 6
Three sides of a triangular meadow are of length $28 \mathrm{~m}, 45 \mathrm{~m}$ and 53 m long respectively. Find the cost of sowing seeds(in rupees per sq.m) in the meadow at the rate of $\mathbf{1 2}$ rupees per sq.m.

A 7560

B 6860

C 7960

D 7860
Answer: A

Explanation:

Given the sides of triangle are $28 \mathrm{~m}, 45 \mathrm{~m}$ and 53 m
Since, $28^{2}+45^{2}=784+2025=2809=53^{2}$
$=>$ The given sides are of right angled triangle as,
$c^{2}+b^{2}=a^{2}$ where a, b, c are the sides of the triangle.
$=>$ Area of triangular field $=\stackrel{1}{2} \times 28 \times 45=630 \mathrm{~m}^{2}$
$=>$ Cost of soŷving seeds $=12 \times 630=R s .7560$ rupees $/ \mathrm{m}^{2}$

SSC CGL Free Mock Test (Latest Pattern)

Question 7

In a triangle $\mathbf{P Q R}$, internal angular bisectors of $\angle Q$ and $\angle R$ intersect at a point \mathbf{O}. If $\angle P=110^{\circ}$ then what is the value of $\angle Q O R$?

A 125°

B 135°

C 145°

D 115°
Answer: C

Explanation:

Let $\angle Q=2 \mathrm{x}$ and $\angle R=2 \mathrm{y}$
Sum of angles in a triangle $=180$
$2 x+2 y+110=180$
$2 x+2 y=70$
$x+y=35$
Similarly in the triangle QOR we have $\angle O Q R+\angle Q R O+\angle Q O R=180$
$\mathrm{x}+\mathrm{y}+\angle Q O R=180^{\circ}$
$35+\angle Q O R=180^{\circ}$
$\angle Q O R=145^{\circ}$

Question 8

In a triangle $X Y Z, X A$ is the angle bisector onto $Y Z$. If the semiperimeter of the triangle is 12 and $X Y=12$,$Y Z=6$ then what is the ratio of YA:AZ ?

A 2:3

B 2:1

C $1: 2$

D $3: 2$

Answer: B

Explanation:

In triangle $X Y Z$ we have $s=12$
$(x+y+z) / 2=12$
$x+y+z=24$
$12+6+y=24$
$y=6$
Angle bisector divides the opposite side in the ratio of other sides i.e
XY/XZ=YA/AZ
YA/AZ=12/6
$Y A / A Z=2: 1$

Question 9

In a triangle $A B C, A X$ is the angle bisector onto $B C$. If the semiperimeter of the triangle is 9 and $A B=4$,$B C=6$ then what is the ratio of $B X: X C$?

A 2:3

B $\quad 2: 1$

C $1: 2$

D 3:2
Answer: C

Explanation:

In triangle $A B C$ we have $s=9$
$(a+b+c) / 2=9$
$a+b+c=18$
$4+6+b=18$
$b=8$
Angle bisector divides the opposite side in the ratio of other sides i.e $A B / A C=B X / X C$
$B X / X C=4 / 8$
$B X / X C=1: 2$

SSC CHSL Prevoius Papers (DOWNLOAD PDF)

Question 10
In an equilateral triangle, if $h-R=15 \mathrm{~cm}$ where $h=h e i g h t$ of the triangle and $R=c i r c u m r a d i u s$ then what is the area of the triangle ?

A $275 \sqrt{3}$

B $225 \sqrt{3}$

C $500 \sqrt{3}$

D $675 \sqrt{3}$
Answer: D

Explanation:

In an equilateral triangle,all the points such as orthocentre,centroid,circumcenter coincide.
Let the triangle be PQR/and the circumcentre be O . let median intersect QR at A

Centroid divides median in the ratio 2:1.PA=h,OA=R
$\mathrm{OA}=15 \mathrm{~cm}$
Therefore $(\mathrm{PO}: \mathrm{OA})=2: 1$
PO:15=2:1
$\mathrm{PO}=30$
$\mathrm{PA}=\mathrm{PO}+\mathrm{OP}$
$\mathrm{PA}=30+15$
$\mathrm{PA}=45$
PA is also the altitude using it side of the triangle can be calculated.
$\sqrt{3} * s / 2=45$
$\mathrm{s}=30 \sqrt{3}$
Area of an equilateral triangle $=\sqrt{3}\left(s^{2}\right) / 4$
$=675 \sqrt{3}$

Question 11

In an equilateral triangle, if $h-R=5 \mathrm{~cm}$ where $h=h e i g h t$ of the triangle and $R=c i r c u m r a d i u s$ then what is the area of the triangle ?

A $50 \sqrt{3}$
B $100 \sqrt{3}$
C $75 \sqrt{3}$
D $25 \sqrt{3}$
Answer: C

Explanation:

In an equilateral triangle, all the points such as orthocentre,centroid, circumcenter coincide.
Let the triangle be PQR and the circumcentre be 0 . let median intersect QR at A
Centroid divides median in the ratio 2:1
$O A=5 \mathrm{~cm}$
Therefore $(\mathrm{PO}: \mathrm{OA})=2: 1$
$\mathrm{PO}: 5=2: 1$
$\mathrm{PO}=10$
$\mathrm{PA}=\mathrm{PO}+\mathrm{O}$
$P A=10+5$
$\mathrm{PA}=15$
PA is also the altitude using it side of the triangle can be calculated.
$\sqrt{3} * s / 2=15$
$\mathrm{s}=10 \sqrt{3}$
Area of an equilateral triangle $=\sqrt{3}\left(s^{2}\right) / 4$
$=75 \sqrt{3}$

Question 12

In an equilateral triangle $P Q R, P A$ is the altitude. O is the orthocentre and $P O=12$ the find the value of PA.

A 14

B 20

C 16

D 18
Answer: D

Explanation:

In an equilateral triangle, all the points such as orthocentre, centroid, circumcenter coincide.
So O is also the centroid.
Centroid divides median in the ratio 2:1
Therefore (PO:OA) $=2.1$
12:OA=2:1
OA=6
$P A=P O+P A$
$\mathrm{PA}=12+6$
$P A=18$

25 SSC CGL Mocks - Just Rs. 149

Question 13
In an equilateral triangle $X Y Z, X A$ is the altitude. O is the orthocentre and $X O=8$ the find the value of $X A$.

A 12

B 10

C 16
D 14
Answer: A

Explanation:

In an equilateral triangle, all the points such as orthocentre,centroid,circumcenter coincide.
So O is also the centroid.
Centroid divides median in the ratio 2:1
Therefore (XO:OA) $=2: 1$
8:OA=2:1
$\mathrm{OA}=4$
$X A=X O+O A$
$X A=8+4$
$X A=12$

Question 14

In a triangle $\mathbf{X Y Z}, \boldsymbol{I}$ is the incentre and $\angle X Y Z=40$ and $\angle Y Z X=60$. What is the value of $\angle Y I Z=$?

A 120
B 130

C 80
D 100
Answer: B

Explanation:

In a triangle $X Y Z$,
$\angle X+\angle Y+\angle Z=180$
Given $\angle Y=40 \angle Z=60$
Therefore $\angle X=180-(40+60)$
$=80$
As I is the incentre we have $\angle Y I Z=90+(\angle X / 2)$
$=90+40$
$=130$

Question 15

In a triangle $\mathbf{P Q R}, \boldsymbol{I}$ is the incentre and $\angle P Q R=70$ and $\angle P R Q=40$. What is the value of $\angle Q I R=$?

A 70

B 135
C 115

D 125
Answer: D

Explanation:

In a triangle PQR ,
$\angle P+\angle Q+\angle R=180$
Given $\angle Q=70 \angle R=40$
Therefore $\angle P=180-(40+70)$
$=70$
As I is the incentre we have $\angle Q I R=90+(\angle P / 2)$
$=90+35$
$=125$

SSC CHSL Free Mock Test (Latest Pattern)

Question 16

Find the value of $\angle C A B$ if Internal bisectors of $\angle A$ and $\angle B$ of $\triangle A B C$ intersect at O and $\angle C O B=124^{\circ}$.

A 36°
B 16°

C 96°

D 68°
Answer: D

Explanation:

Given that, $\angle C O B=124^{\circ}$
To find : $\angle \mathrm{RPQ}=\theta=$?
Solution : Let $\angle \mathrm{CAB}=2 x$ and $\angle \mathrm{ACB}=2 y$
$=>\angle \mathrm{OBC}=x$ and $\angle \mathrm{OCB}=y$ [SInce, $\mathrm{BO} \& \mathrm{CO}$ are angle bisectors]
In $\triangle A B C$
$=>\theta+\angle A B C+\angle A C B=180^{\circ}$
$=>\theta=180^{\circ}-2(x+y)$
In $\triangle B O C$
$=>x+y+124^{\circ}=180^{\circ}$
$=>x+y=56^{\circ}$
Putting value of $(x+y)$ in eq. (1)
$=>\theta=180-2 * 56=180-112=68^{\circ}$
Question 17
Find the maximum possible area $\left(i n \mathrm{~cm}^{2}\right)$ of a triangle which can be formed using a thread of length 36 cm.?

A 45

B $39 \sqrt{3}$

C $36 \sqrt{3}$

D $\quad 36$
Answer: C

Explanation:

The perimeter of the triangle is given as 36 cm .
The triangle of a fixed perimeter will have the maximum possible area when all the sides are of equal length.
So each side should be of length 12 cm for the triangle to have maximum possible area(i.e. Equilateral triangle).
In this case the area will be,
${ }_{4}^{\sqrt{3}} \times a^{2}$
$\stackrel{\sqrt{3}}{4} \times 12 \times 12$
$=36 \sqrt{3} \mathrm{~cm}^{2}$
Question 18
If the angles of a triangle $P Q R$ are in the ratio $2: 3: 7$, which among the following is a measure of an angle of the triangle PQR?

A 48°

B 55°
C 15°
D 105°
Answer: D

Explanation:

Given, the angles of a triangle $P Q R$ are in the ratio 2:3:7
Let the angles of the triangle be $2 x, 3 x$ and $7 x$.
Sum of the angles in a triangle $=180^{\circ}$
$2 x+3 x+7 x=180^{\circ}$
$12 \mathrm{x}=180$
$x=15^{\circ}$
The angles are $30^{\circ}, 45^{\circ}, 105^{\circ}$
Hence, option D is the correct answer.

25 SSC CHSL Mocks - Just 149

Question 19
A tangent of length 45 cm is drawn from a point to a circle of diameter 56 cm . Find the length(in cm) of the tangent from the center of the circle?

A 47

B 69

C 53

D 73
Answer: C

Explanation:

Given diameter $=56 \mathrm{~cm}$
radius $O A=56 / 2=28$ and $A B=45 \mathrm{~cm}$
Now, in $\triangle O A B$ right angle at A
$O B=\sqrt{(A B)^{2}+(O A)^{2}}$
$=\sqrt{784+2025}=\sqrt{2809}$
$=53 \mathrm{~cm}$

Question 20

$\angle P, \angle Q, \angle R$ are three angles of a triangle. If $\angle P-\angle Q=16^{\circ}, \angle Q-\angle R=28^{\circ}$, then $\angle P, \angle Q$ and $\angle R$ are

A $76^{\circ}, 60^{\circ}, 44^{\circ}$

B $80^{\circ}, 60^{\circ}, 40^{\circ}$

C $80^{\circ}, 64^{\circ}, 36^{\circ}$

D $76^{\circ}, 68^{\circ}, 38^{\circ}$

Answer: C

Explanation:

Given $\angle P-\angle Q=16^{\circ} \rightarrow(1)$
$\angle Q-\angle R=28^{\circ} \rightarrow(2)$
From equation (1), $\angle Q=\angle P-16^{\circ}$
Substituting $\angle B$ value in equation(2)
$(\angle P-16)-\angle R=28^{\circ}$
$\Rightarrow \angle R=\angle P-44^{\circ}$
We know that $\angle P+\angle Q+\angle R=180^{\circ}$
Substituting $\angle P, \angle Q, \angle R$ values in above equation

SSC CGL Previous Papers (DOWNLOAD PDF)

SSC CGL Free Mock Test (Latest Pattern)

SSC CHSL Prevoius Papers (DOWNLOAD PDF)
25 SSC CGL Mocks - Just Rs. 149
SSC CHSL Free Mock Test (LatestPattern)

25 SSC CHSL Mocks - Just 149

Free SSC Study Material (18,000 Solved Questions)

Daily Free SSC Practice Set
100 Free SSC GK Tests

General Knowledge Questions \& Answers (Download pdf) General Science Notes for SSC CGL

Current Affairs Questions \& Answers (Download pdf)
SSC Exam Update Videos \& Free Study Material (YouTube Channel)

Daily \& Monthly Current Affairs (Download pdf)
1500+ Very Important Free SSC Solved Questions

285 SSC Mocks - Just RS. 249
SSC Free Preparation App
SSC CGL Free Mock Test
SSC CHSL Previous Question papers (download pdf) SSC CHSL Free Mock Test

SSC MTS Previous Question papers (download pdf) SSC MTS Free Mock Test

SSC CPO Previous Question papers (download pdf)
SSC GD Previous Question papers (download pdf) SSC Stenographer Previous Question papers (download pdf)

SSC CPO Free Mock Test

SSC GD Free Mock Test

SSC Stenographer Free Mock Test

