cracku

Coordinate Geometry Questions for SNAP

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature without the permission of cracku.in, application for which shall be made to support@cracku.in

Questions

Instructions
For the following questions answer them individually

Question 1

What is the equation of a circle with centre of origin and radius is 6 cm ?

A $\quad x^{2}+y^{2}-y=36$

B $\quad x^{2}+y^{2}-x-y=36$
C $x^{2}+y^{2}-36=0$

D $x^{2}+y^{2}-x=36$

Answer: C

Explanation:

Given,
Center of the circle $=(0,0)$

Radius of the circle $(r)=6 \mathrm{~cm}$
\therefore Equation of the circle is $x^{2}+y^{2}=r^{2}$
$\Rightarrow x^{2}+y^{2}=6^{2}$
$\Rightarrow x^{2}+y^{2} \neq 36$
$\Rightarrow x^{2}+y^{2}-36=0$
Hence, the correct answer is Option C

Question 2

The equation of circle with centre $(1,-2)$ and radius 4 cm is:

A $\quad x^{2}+y^{2}+2 x-4 y=11$

B $\quad x^{2}+y^{2}+2 x-4 y=16$
C $x^{2}+y^{2}-2 x+4 y=16$
D $x^{2}+y^{2}-2 x+4 y=11$

Answer: D

Explanation:

Given,
Centre of the circle $(\mathrm{a}, \mathrm{b})=(1,-2)$
Radius of the circle $(r)=4 \mathrm{~cm}$
\therefore Equation of the circle is $(x-a)^{2}+(y-b)^{2}=r^{2}$
$\Rightarrow(x-1)^{2}+(y-(-2))^{2}=4^{2}$
$\Rightarrow(x-1)^{2}+(y+2)^{2}=4^{2}$
$\Rightarrow x^{2}+1^{2}-2 \cdot x \cdot 1+y^{2}+2^{2}+2 \cdot y \cdot 2=16$
$\Rightarrow x^{2}+1-2 x+y^{2}+4+4 y=16$
$\Rightarrow x^{2}-2 x+y^{2}+4 y=16-1-4$
$\Rightarrow x^{2}+y^{2}-2 x+4 y=11$

$\Rightarrow x^{2}+y^{2}-2 x+4 y=11$

Question 3

In $\triangle A B C, A B=A C$. A circle drawn through B touches AC at D and intersect AB at P . If D is the mid point of AC and AP 2.5 cm , then $A B$ is equal to:

A 9 cm

B $\quad 10 \mathrm{~cm}$

C 7.5 cm

D $\quad 12.5 \mathrm{~cm}$

Given D is midpoint of $A C$ so,
$\mathrm{AD}={ }_{2}^{A C}$
But also given $A C=A B$
$\mathrm{AD}=\begin{gathered}A B \\ 2\end{gathered}$---(1)
$A D$ is a tangent and APB is a secant. So the tangent secant theorem can be applied,
$A D^{2}=A P \times A B$
$\binom{A B}{2}^{2}=2.5 \times A B$
${ }_{4}^{A B^{2}}=2.5 \times A B$
$A B=10 \mathrm{~cm}$

3 Free Mock for RBI Grade-B (With Solutions)

Question 4

The graph of the equations $5 x-2 y+1=0$ and $4 y-3 x+5=0$, interest at the point $P(\alpha, \beta)$, What is the value of $(2 \alpha-3 \beta)$?

A 4

B 6

C -4

D -3
Answer: A

Explanation:
$5 x-2 y+1=0$
$15 x-6 y+3=0--(1)$
$3 x-4 y-5=0$
$15 x-20 y-25=0--(2)$
From eq (1) and (2),
$14 y+28=0$
$y=-2$
From eq(1),
$15 x+6 \times 2+3=0$
$\mathrm{x}=-1$
$\alpha=-1$
$\beta=-2$
$(2 \alpha-3 \beta)$
$=(2 \times(-1)+3 \times 2)=4$

Question 5

What is the area (in square units) of the triangular region enclosed by the graphs of the equations $x+y=3,2 x+5 y=12$ and the x axis?

A 2

B 3

C 4

D 6
Answer: B

Explanation:

$x+y=3$
$2 x+2 y=6--(1)$
$2 x+5 y=12--(2)$
From eq (1) and eq (2),
$3 y=6$
$y=2$
So height $=2$
$y=0--(3)$
put the value of y in eq(1) and (2),
$2 x=6$
$\mathrm{x}=3$
And $2 x=12$
$x=6$
Area $={ }_{2}^{1} \times$ base \times height
$={ }_{2}^{1} \times(6-3) \times 2=3$ square units

Question 6

The graphs of the equations $2 x+3 y=11$ and $x-2 y+12=0$ intersects at $P\left(x_{1}, y_{1}\right)$ and the graph of the equations $x-2 y+$ $12=0$ intersects the x -axis at $Q\left(x_{2}, y_{2}\right)$. What is the value of $\left(x_{1}-x_{2}+y_{1}+y_{2}\right)$?

A 13

B -11
C 15

D -9
Answer: C

Explanation:

$2 x+3 y=11--(1)$
$x-2 y+12=0$
$2 x-4 y=-24--(2)$
From eq (1) and (2),
$7 \mathrm{y}=35$
$\mathrm{y}=5=y_{1}$
From eq (1),
$2 x+3 \backslash$ times $5=11$
$2 x=-4$
$\mathrm{x}=-2=x_{1}$
Now,
The graph of the equations $x-2 y+12=0$ intersects the x-axis.
So,
$y=y_{1}=0$
$x-0+12=0$
$\mathrm{x}=-12=x_{1}$
$\left(x_{1}-x_{2}+y_{1}+y_{2}\right)$
$=-2+12+5+0=15$

RBI Grade B Previous Papers PDF

Question 7

The point of intersection of the graphs of the equations $3 x-5 y=19$ and $3 y-7 x+1=0$ is $\mathbf{P}(\alpha, \beta)$. Whatis the value of $(3 \alpha-\beta)$?

A -2

B -1
C 1

D 0
Answer: B

Explanation:

The point of intersection of the graphs of the equations $3 x-5 y=19$ and $3 y-7 x+1=0$ is $P \quad(\alpha, \beta)$ So,
$3 \alpha-5 \beta=19--(1)$
$7 \alpha-3 \beta=1$--(2)
Eq(1) multiply by 3 and eq (2) multiply by 5 ,
$9 \alpha-15 \beta=57--(1)$
$35 \alpha-15 \beta=5--(2)$
From eq (3) and (4),
$26 \alpha=-52$
$\alpha=-2$
From eq (1),
$3 \times-2-5 \beta=19$
$\beta=-5$
Now,

$(3 \alpha-\beta)$
$=(3 \times-2+5 s)$
$=-1$

Question 8

The graph of the equation $\mathbf{x}-7 \mathbf{y}=-42$, intersects the \mathbf{y}-axis at $P(\alpha, \beta)$ and the graph of $\mathbf{6 x + y} \mathbf{- 1 5}=\mathbf{0}$, intersects the \mathbf{x}-axis at $Q(\gamma, \delta)$, What is the value of $\alpha+\beta+\gamma+\delta$?

A $\quad \begin{array}{r}17 \\ 2\end{array}$

B 6
C $\quad 9$

D 5
Answer: A

Explanation:

The graph of the equation $x-7 y=-42$, intersects the y-axis at $P(\alpha, \beta)$
So, $x=0$
$0-7 y=-42$
$y=6$
$\alpha=0$
$\beta=6$
graph of $6 \mathrm{x}+\mathrm{y}-15=0$, intersects the x -axis at $Q(\gamma, \delta)$
So, $y=0$
$6 \mathrm{x}-15=0$
$x=5 / 2$
$\gamma=5 / 2$
$\delta=0$
Now,
$\alpha+\beta+\gamma+\delta$
$=0+6+5 / 2+0=\begin{gathered}17 \\ 2\end{gathered}$

Question 9

The graphs of the equations $3 x+y-5=0$ and $2 x-y-5=0$ intersect at the point $P(\alpha, \beta)$. What is the value of $(3 \alpha+\beta)$?

A 4

B -4

C 3
D 5

Answer: D

Explanation:

When graphs of the equations intersect at the point $P(\alpha, \beta)$ then,
$3 \alpha+\beta-5=0--(1)$
$2 \alpha-\beta-5=0--(2)$,
On eq(1) $+(2)$,
$5 \alpha-10=0$
$\alpha=2$
From the eq(2),
$3 \times 2+\beta-5=0$
$\beta=-1$
Now,
$(3 \alpha+\beta)=3 \times 2-1=6-1=5$
\therefore The correct answer is option D .

RBI Grade-B Study Material (Download PDF)

Question 10
The graph of $x+2 y=3$ and $3 x-2 y=1$ meet the Y-axis at two points having distance

A $\quad \begin{array}{r}8 \\ 3\end{array}$

B $\quad \begin{aligned} & 4 \\ & 3\end{aligned}$ ${ }_{3}^{8}$ units

C 1 units

D 2 units
Answer: D

Explanation:
on Y axis, $x=0$
put $x=0$ in $x+2 y=3$
$2 y=3$
$y={ }_{2}^{3}$
putting $x=0$ in $3 x-2 y=1$
$-2 y=1$
-1
2
therefore points on Y -axis are
$(0, \stackrel{3}{2}) \operatorname{and}\left(0,{ }_{2}^{-1}\right)$
required distance $\left.=\sqrt{(}(0-0)^{2}+\sqrt{(}{ }_{2}^{3}+\frac{1}{2}\right)^{2}$
$=\sqrt{ }(0+4)=2$ units
Question 11
$A B C$ is a cyclic quadrilateral, $A B$ and $D C$ when produced meet at P, if $P A=8 \mathrm{~cm}, P B=6 \mathrm{~cm}, P C=4 \mathrm{~cm}$, then the length (in cm) of P is

A 6

B 12

C 8

D 10
Answer: B

Explanation:

Given that, $P A=8 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}, \mathrm{PC}=4 \mathrm{~cm}$
As per tangent \& secant rule,
$P A \times P B=P D \times P C$
$\Rightarrow P D=\stackrel{8 \times 6}{4}=12 \mathrm{~cm}$

Question 12

In a circle, chords $A D$ and $B C$ meet at a point E outside the circle. If $\angle B A E=76^{\circ}$ and $\angle A D C=102^{\circ}$, then $\angle A E C$ is equal to:

A 25°

B 28°

C 26°

D 24°
Answer: C

Explanation:

In cyclic quadrilateral $A B C D$, sum of opposite angles $=180^{\circ}$
$\Rightarrow \angle B A E+\angle B C D=180^{\circ}$
$\Rightarrow 76^{\circ}+\angle B C D=180^{\circ}$
$\Rightarrow \angle B C D=104^{\circ}$
From the figure,
$\angle A D C+\angle E D C=180^{\circ}$
$\Rightarrow 102^{\circ}+\angle E D C=180^{\circ}$
$\Rightarrow \angle E D C=78^{\circ}$
$\angle \mathrm{BCD}+\angle \mathrm{ECD}=180^{\circ}$

$=>104^{\circ}+\angle E C D=180^{\circ}$
$=\angle E C D=76^{\circ}$
In $\triangle \mathrm{CDE}$,
$\angle \mathrm{DEC}+\angle \mathrm{ECD}+\angle \mathrm{EDC}=180^{\circ}$
$=\angle \mathrm{AEC}+76^{\circ}+78^{\circ}=180^{\circ}$
$\Rightarrow \angle A E C+154^{\circ}=180^{\circ}$
$=>\angle A E C=26^{\circ}$
Hence, the correct answer is Option C

RBI Assistant Free Mock Test (With Solutions)

Question 13
If $\triangle A B C, \angle A B C=90^{\circ}$ and $B D \perp A C$, if $A D=4 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$ then $B D$ is equal to

A $3 \sqrt{5}$

B $2 \sqrt{5}$

C $3 \sqrt{2}$
D $4 \sqrt{5}$
Answer: B

Explanation:

Let $\angle \mathrm{C}=\mathrm{x}$
In $\triangle A B C$,
$\cos x={ }_{9}^{B C}$
$\Rightarrow B C=9 \cos x$
In $\triangle B C D$,
$\cos x=\stackrel{5}{B C}$
$\Rightarrow \quad \cos x=\begin{gathered}5 \\ 9 \\ \cos x\end{gathered}$
$\Rightarrow \cos ^{2} x={ }_{9}^{5}$
$\Rightarrow \cos x=\begin{gathered}\sqrt{5} \\ 3\end{gathered}$

$\Rightarrow \quad \sin x=\sqrt{1-\cos ^{2} x}=\sqrt{1-\stackrel{5}{9}}=\sqrt{{ }^{4}}={ }_{3}^{2}$
In $\triangle B C D$
$\sin x={ }_{B C}^{B D}$
$\Rightarrow \stackrel{2}{3}=\begin{gathered}B D \\ \cos x\end{gathered}$
$\Rightarrow{ }_{3}^{2}=9\left(\begin{array}{c}B D \\ \binom{5}{3}\end{array}\right.$
$\Rightarrow{ }_{3}^{2}=\begin{array}{r}3 B D \\ 9(\sqrt{5})\end{array}$
$\Rightarrow B D=2 \sqrt{5}$
Hence, the correct answer is Option B

Question 14

In $\triangle A B C, \angle A=72^{\circ}$. Its sides $A B$ and $A C$ are produced to the points D and E respectively. If the bisectors of the $\angle C B D$ and $\angle B C E$ meet at point O, then $\angle B O C$ is equal to:

A 16°

B 54°

C 32°

D 106°
Answer: B

Explanation:

Given,
In $\triangle \mathrm{ABC}, \angle \mathrm{A}=72^{\circ}$

OB is the angular bisector of $\angle \mathrm{CBD}$
$=\angle O B D=\angle O B C$
Let $\angle \mathrm{OBD}=\angle \mathrm{OBC}=x$
$O C$ is the angular bisector of $\angle B C E$
$\Rightarrow \angle O C E=\angle O C B$
Let $\angle O C E=\angle O C B=y$
From the figure,
$\angle \mathrm{ABC}+\angle \mathrm{CBD}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+x+x=\angle 180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}=180^{\circ}-2 x$
$\angle A C B+\angle B C E=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}+y+y=180^{\circ}$
$=\angle \angle A C B=180^{\circ}-2 y$
In $\triangle \mathrm{ABC}$
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$\Rightarrow 180^{\circ}-2 x+180^{\circ}-2 y+72^{\circ}=180^{\circ}$
$\Rightarrow 2 x+2 y=180^{\circ}+72^{\circ}$
$\Rightarrow 2(x+y)=252^{\circ}$
$\Rightarrow x+y=126^{\circ}$ \qquad
In $\triangle O B C$,
$\angle O B C+\angle O C B+\angle B O C=180^{\circ}$
$\Rightarrow x+y+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow 126^{\circ}+\angle B O C=180^{\circ}$
$\Rightarrow \angle B O C=180^{\circ}-126^{\circ}$
$=\angle B O C=54^{\circ}$
Hence, the correct answer is Option B

Question 15

The distance between the centres of two circles of radius 2.5 cm each is 13 cm . The length (in cm) of a transverse common tangent is:

A 12

B 8

C 6

D 10

Answer: A

Explanation:

Radius of first circle $\left(r_{1}\right)=2.5 \mathrm{~cm}$
Radius of second circle $\left(r_{2}\right)=2.5 \mathrm{~cm}$
The distance between centres of two circles $(d)=13 \mathrm{~cm}$
\therefore Length of the common tangent $=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)^{2}}$
$=\sqrt{13^{2}-(2.5+2.5)^{2}}$
$=\sqrt{169-25}$
$=\sqrt{144}$
$=12 \mathrm{~cm}$
Hence, the correct answer is Option A

Download Highly Rated Banking APP

Question 16

$A B C D$ is a cyclic quadrilateral such that $A B$ is a diameter of the circle circumscribing it and $\angle A D C=126^{\circ} . \angle B A C$ is equal to:

A 24°

B 72°

C 18°

D 36°
Answer: D

Explanation:

In cyclic quadrilateral $A \widehat{B C D}$, sum of opposite angles $=180^{\circ}$
$\Rightarrow \angle A D C+\angle A B C=180^{\circ}$
$\Rightarrow 126^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \angle A B C=54^{\circ}$
Angle subtended by diameter in a semicircle is 90°
$\Rightarrow \angle A C B=90^{\circ}$
In $\triangle \mathrm{ACB}$,
$\angle \mathrm{BAC}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \angle B A C+90^{\circ}+54^{\circ}=180^{\circ}$
$\Rightarrow \angle B A C+144^{\circ}=180^{\circ}$
$\Rightarrow \angle B A C=36^{\circ}$
Hence, the correct answer is Option D
Question 17
In $\triangle A B C, \angle A=52^{\circ}$. Its sides $A B$ and $A C$ are produced to the points D and E respectively. If the bisectors of the $\angle C B D$ and $\angle B C E$ meet at point 0 , then $\angle B O C$ is equal to:

A 64°

B 16°

C 106°
D 32°
Answer: A

Explanation:

D

Given,
In $\triangle \mathrm{ABC}, \angle \mathrm{A}=52^{\circ}$
OB is the angular bisector of $\angle \mathrm{CBD}$
$\Rightarrow \angle O B D=\angle O B C$
Let $\angle \mathrm{OBD}=\angle \mathrm{OBC}=x$
$O C$ is the angular bisector of $\angle B C E$
$=\angle O C E=\angle O C B$
Let $\angle \mathrm{OCE}=\angle \mathrm{OCB}=y$
From the figure,
$\angle A B C+\angle C B D=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+x+x=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}=180^{\circ}-2 x$
$\angle A C B+\angle B C E=180^{\circ}$
$\Rightarrow \angle \mathrm{ACB}+y+y=180^{\circ}$
$=\angle \angle A C B=180^{\circ}-2 y$
In $\triangle \mathrm{ABC}$,
$\angle A B C+\angle A C B+\angle B A C=180^{\circ}$
$\Rightarrow 180^{\circ}-2 x+180^{\circ}-2 y+52^{\circ}=180^{\circ}$
$\Rightarrow 2 x+2 y=180^{\circ}+52^{\circ}$
$\Rightarrow 2(x+y)=232^{\circ}$
$\Rightarrow x+y=116^{\circ}$
In $\triangle O B C$,
$\angle O B C+\angle O C B+\angle B O C=180^{\circ}$
$\Rightarrow x+y+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow 116^{\circ}+\angle \mathrm{BOC}=180^{\circ}$
$=>\angle B O C=180^{\circ}-116^{\circ}$
$\Rightarrow \angle B O C=64^{\circ}$
Hence, the correct answer is Option A

Question 18

PA and PB are the tangents to a circle with centre 0 , from a point P outside the circle. A and B are the points on the circle. If $\angle \mathrm{APB}=$ 72°, then $\angle O A B$ is equal to:

A 24°

B 18°

C 36°

D 72°

Answer: C

Explanation:

Given, $\angle \mathrm{APB}=72^{\circ}$
PA and PB are the tangents to the circle with centre O
$\Rightarrow \angle O A P=90^{\circ}$ and $\angle O B P=90^{\circ}$
In quadrilateral OAPB,
$\angle \mathrm{AOB}+\angle \mathrm{OBP}+\angle \mathrm{APB}+\angle \mathrm{OAP}=360^{\circ}$
$=>\angle A O B+90^{\circ}+72^{\circ}+90^{\circ}=360^{\circ}$
$=>\angle A O B+252^{\circ}=360^{\circ}$
$\Rightarrow \angle A O B=108^{\circ}$
In $\triangle \mathrm{OAB}, \mathrm{OA}=\mathrm{OB}$
Angles opposite to equal sides are equal in triangle
$\Rightarrow \angle O B A=\angle O A B$
In $\triangle \mathrm{OAB}$,
$\angle A O B+\angle O B A+\angle O A B=180^{\circ}$
$\Rightarrow 108^{\circ}+\angle O A B+\angle O A B=180^{\circ}$
$\Rightarrow 2 \angle O A B=72^{\circ}$
$\Rightarrow \angle O A B=36^{\circ}$
Hence, the correct answer is Option C

Best Youtube Channel for Banking Preparation

Question 19
The distance between the centres of two circles of radius 3 cm and 2 cm is 13 cm . The length (in cm) of a transverse common tangent is:

A 8

B 12
C 6
D 10
Answer: B

Explanation:

Radius of first circle (r_{1}) $=3 \mathrm{~cm}$
Radius of second circle $\left(r_{2}\right)=2 \mathrm{~cm}$
The distance between centres of two circles $(d)=13 \mathrm{~cm}$
\therefore Length of the common tangent $=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)^{2}}$

$=\sqrt{13^{2}-(3+2)^{2}}$
$=\sqrt{169-25}$
$=\sqrt{144}$
$=12 \mathrm{~cm}$
Hence, the correct answer is Option B

Question 20

The distance between the centre of two circles of radius 4 cm and 2 cm is 10 cm . The length (in cm) of a transverse common tangent is:

A 4
B 6

C 10
D 8

Given, distance between centres of circles $(d)=10 \mathrm{~cm}$
Radius of first circle $\left(r_{1}\right)=4 \mathrm{~cm}$
Radius of second circle $\left(r_{2}\right)=2 \mathrm{~cm}$
\therefore The length of tranverse common tangent $=\sqrt{d^{2}-\left(r_{1}+r_{2}\right)^{2}}=\sqrt{10^{2}-(4+2)^{2}}=\sqrt{100-36}=8 \mathrm{~cm}$

3 Free Mock for RBI Grade-B (With Solutions)

RBI Grade B Previous Papers PDF RBI Grade-B Study Material (Download PDF) RBI Assistant Free Mock Test (With Solutions) Download Highly Rated Banking APP

Best Youtube Channelfor Banking Preparation General Science Notes (Download PDF)

100 Computer Awareness Tests For Banking Exams

General Knowledge Questions \& Answers (Download pdf) Free Banking Study Material (15000 Solved Questions)

Daily Free Banking Online Test

200+ Free GK Tests for Banking exams

Daily Current Affairs for Banking exams PDF

 200+ Banking Previous Papers (Download PDF)