crackus

Mixture and Alligation Questions for SNAP

$$
\begin{aligned}
& \text { All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any } \\
& \text { form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any } \\
& \text { retrieval system of any nature without the permission of cracku.in, application for which shall be made } \\
& \text { to support@cracku.in }
\end{aligned}
$$

Questions

Instructions
For the following questions answer them individually

Question 1

A vessel contains a mixture of milk and water in the respective ratio of $14: 3.25 .5$ litres of the mixture is taken out from the vessel and 2.5 litres of pure water and 5 litres of pure milk is added to the mixture. If the resultant mixture contains 20% water, what was the initial quantity of mixture in the vessel before the replacement? (in litres)

A 51

B 102

C 68

D 85

E 34
Answer: C

Explanation:

Let the total quantity of mixture in the vessel initially $=17 x$ litres
=> Quantity of milk $=17 \times 17 x=14 x$ litres
Quantity of water $=17 x-14 x=3 x$ litres
Acc. to ques,

$$
\begin{aligned}
& 14 x-\left(\begin{array}{l}
14 \\
17
\end{array} \times 25.5\right)+5 \\
=> & 3 x-(17 \times 25.5)+2.5={ }_{20}^{80} \\
= & 14 x-21+5 \\
= & 3 x-4.5+2.5=1 \\
\Rightarrow & 14 x-16 \\
=> & 3 x-2=1 \\
=> & 14 x-16=12 x-8 \\
\Rightarrow & 14 x-12 x=16-8 \\
=> & x={ }_{2}^{8}=4
\end{aligned}
$$

\therefore Initial quantity of mixture in the vessel before the replacement $=17 \times 4 \neq 68$ litres

Question 2

A vessel contains 100 litres mixture of milk and water in the respective ratio of $22: 3.40$ litres of the mixture is taken out from the vessel and 4.8 litres of pure milk and pure water each is added to the mixture. By what percent is the quantity of water in the final mixture less than the quantity of milk?

A $78{ }_{2}^{1}$

B $\quad 79{ }_{6}^{1}$
C $\quad 72{ }_{6}^{5}$

D 76
E $\quad 77{ }^{1}$
Answer: B

Explanation:

Quantity of milk in vessel $=\stackrel{22}{25} \times 100=88$ litres
=> Quantity of water $=100-88=12$ litres
40 litres of the mixture is taken out, i.e., $\begin{gathered}40 \\ 100\end{gathered}=\binom{2}{5}^{t h}$
=> Milk left $=88-\stackrel{2}{5} \times 88=52.8$ litres
Water left $=12-\stackrel{2}{5} \times 12=7.2$ litres
Now, 4.8 lires of milk and water are added.
$=>$ Quantity of milk in the vessel $=52.8+4.8=57.6$ litres
Quantity of water in the vessel $=7.2+4.8=12$ litres
\therefore Required $\%=\begin{gathered}57.6-12 \\ 57.6\end{gathered} \times 100$
$={ }_{6}^{475}=79 \% \%$
Question 3
Jar A has 60 litres of mixture of milk and water in the respective ratio of $2: 1$. Jar B which had 40 litres of mixture of milk and water was emptied into jar A, as a result in jar A, the respective ratio of milk and water became $13: 7$. What was the quantity of water in jar B ?

A 8 litres

B 15 litres

C 22 litres

D 7 litres

E 1 litre
Answer: B

Explanation:

Jar A has 60 litres of mixture of milk and water in the respective ratio of $2: 1$
=> Quantity of milk in Jar $A=\stackrel{2}{3} \times 60=40$ litres
Quantity of water in Jar A $=60-40=20$ itres
Let quantity of water in Jar $\mathrm{B}=x$ litres
=> Quantity of milk in Jar B $=(40-x)$ litres
Acc. to ques, $=>\quad \begin{gathered}40+(40-x) \\ 20+x\end{gathered}=\begin{gathered}13 \\ 7\end{gathered}$
=> $560-7 x=260+13 x$
$\Rightarrow 13 x+7 x=560-260$
=> $20 x=300$
=> $x=\begin{gathered}300 \\ 20\end{gathered}=15$ litres

3.Free Mock for RBI Grade-B (With Solutions)

Question 4

Jar A has 36 litres of mixture of milk and water in the respective ratio of $5: 4$. Jar B which had 20 litres of mixture of milk and water, was emptied into jar A, and as a result in jar A, the respective ratio of milk and water becomes 5 : 3 . What was the quantity of water in jar B?

A 5 litres

B 3 litres
C 8 litres

D 2 litres

E 1 litre
Answer: A

Explanation:

Jar A has 36 litres of mixture of milk and water in the respective ratio of $5: 4$
=> Quantity of milk in Jar A $={ }_{9}^{5} \times 36=20$ litres
Quantity of water in Jar A = 36-20 = 16 itres
Let quantity of water in Jar $\mathrm{B}=x$ litres
=> Quantity of milk in Jar B $=(20-x)$ litres
Acc. to ques, $=>{ }^{20+(20-x)} 16+x={ }_{3}^{5}$
=> $120-3 x=80+5 x$
=> $5 x+3 x=120-80$
=> $8 x=40$
=> $x={ }_{8}^{40}=5$ litres
Question 5
Jar A contains 78 litres of milk and water in the respective ratio of $6: 7.26$ litres of the mixture was taken out from Jar A. What quantity of milk should be added to jarA, so that water constitutes 40% of the resultant mixture in jar A?

A 8 litres

B 36 litres

C 12 litres

D 14 litres

E 18 litres
Answer: E

Explanation:

Jar A has 78 litres of mixture of milk and water in the respective ratio of $6: 7$
=> Quantity of milk inPlar $A={ }_{13}^{6} \times 78=36$ litres
Quantity of water in Jar $A=78-36=42$ litres
26 litres of the mpixture was taken out from Jar A, i.e., $78_{26}^{26}=\binom{1}{3}^{r d}$
=> Milk left $=36-{ }_{3}^{1} \times 36=24$
Water left $=42-\frac{1}{3} \times 42=28$
Let milk added to jar $\mathrm{A}=x$ litres
Acc. to ques, $=>{ }^{24+x}={ }^{68}=40$
=> ${ }_{28}^{24+x}={ }_{2}^{3}$
$\Rightarrow 48+2 x=84$
=> $2 x=84-48=36$
=> $x={ }_{2}^{36}=18$ litres
Question 6
A vessel contains 60 litres of milk. 6 litres of milk is taken out and 6 litres of water is added to the vessel. Again 6 litres of mixture from the vessel is withdrawn and 6 litres of water is added to the vessel. The ratio of milk and water in the resulting mixture in the vessel is

A 81: 19

B 71: 29

C 61:39

D 61: 29

E None of these
Answer: A

Explanation:

If we are taking out 6 litres out of a 60 litre solution and replacing it with water,
=> We are replacing ${ }_{10}^{10}$ th of the solution with water
=> Fraction of milk will become $\underset{10}{9}$ th of original.
If the process is repeated ' n ' times, fraction of milk will become $(10)^{n}$ of the original.
Here, the process is done twice.
=> Final quantity of milk $=(10)^{2} \times 60=48.6$ litres
and Final quantity of water $=60-48.6=11.4$ litres
\therefore Required ratio $=11.4=81: 19$

RBI Grade B Previous Papers PDF

Question 7
The milk and water in two vessels A and B are in the ratio $4: 3$ and $2: 3$ respectively. In what ratio the liquids in both the vessels be mixed to obtain a new mixture in vessel C consisting half milk and half water?

A 8:3

B 7:5

C 4:3

D 2:3

E None of these
Answer: B

Explanation:

Let mixture in vessel $\mathrm{A}=x \mathrm{ml}$
and mixture in vessel $\mathrm{B}=y \mathrm{ml}$
=> Milk in vessel $\mathrm{A}=\stackrel{4 x}{7}$

Milk in vessel $\mathrm{B}=\begin{gathered}2 y \\ 5\end{gathered}$
Acc to ques,
$={ }_{7}^{4 x}+{ }_{5}^{2 y}={ }_{2}^{1}(x+y)$
=> ${ }_{7}^{4 x}-{ }_{2}^{x}=\stackrel{y}{2}-\stackrel{2 y}{5}$
=> $\begin{gathered}x \\ 14\end{gathered}=\begin{array}{r}y \\ 10\end{array}$
$\Rightarrow \stackrel{x}{y}=\stackrel{14}{10}=\stackrel{7}{5}$
Question 8
Jar A contains ' X ' litre of pure milk only. A 27 litre mixture of milk and water in the respective ratio of $4: 5$, is added to jar A. The new mixture thus formed in jar A contains 70% milk, what is the value of X ?

A 23

B 30

C 27
D 48

E 28

Answer:

Explanation:

Quantity of milk in 27 litre mixture $=4+5 \times 27=12$ litre
Quantity of water $=27-12=15$ litre
Ratio of milk and water in the new mixture $=70: 30=7: 3$
Acc to ques,
=> ${ }^{X+12}={ }_{3}^{7}$
=> $3 X+36=15 \times 7=105$
=> $3 X=105-36=69$
"> $X={ }_{3}^{69}=23$ litre
Question 9

In a vessel there is 40 litres mixture of milk and water. There is 15% water in the mixture. The milkman sells 10 litres of mixture to a customer and thereafter adds $\mathbf{1 2 . 5}$ litres of water to the remaining mixture. What is the respective ratio of milk and water in the new mixture?

A 2:3

B 3:2

C 3:4

D 4:3

E None of these
Answer: B

Explanation:
Mixture remaining after selling 10 litres $=40-10=30$ litres

Now, quantity of water in 30 litres of mixture $=150 * 30=4.5$ litres
Milk $=30-4.5=25.5$ litres
After adding 12.5 litres of water, total quantity of water $=12.5+4.5=17$ litres
\therefore Required ratio of milkand water $=25.5: 17$
$=1.5: 1=3: 2$

RBI Grade-B Study Material (Download PDF)

Question 10
18 litres of pure water was added to a vessel containing 80 litres of pure milk. 49 litres of the resultant mixture was then sold and some more quantity of pure milk and pure water was added to the vessel in the respective ratio of $2: 1$. If the resultant respective ratio of milk and water in the vessel was $4: 1$, what was the quantity of pure milk added in the vessel ? (in litres)

A 4

B 8

C 10

D 12

E 2
Answer: A

Explanation:

18 litres of pure water was added to a vessel containing 80 litres of pure milk.
Total mixture $=80+18=98$ litres
Now, 49 litres i.e., ${ }_{2}^{1}$ is removed, $=>$ Milk left $=\stackrel{80}{2}=40$ litres
Water left $={ }_{2}^{18}=9$ litres
Let milk added be $2 x$ litres and water added is x litres
=> ${ }_{9+x}^{40+2 x}={ }_{1}^{4}$
$\Rightarrow 40+2 x=36+4 x$
=> $2 x=40-36=4$
=> $x={ }_{2}^{4}=2$
\therefore Quantity of milk added $=2 \times 2=4$ litres
Question 11
A vessel contains a mixture of milk and water in the respective ratio of $10: 3$. Twenty-six litre of this mixture was taken out and replaced with 8 litre of water. If the resultant respective ratio of milk and water in the mixture was $5: 2$, what was the initial quantity of mixture in the vessel ? (in litre)

A 143

B 182

C 169

D 156

E 130

Answer:

Explanation:

Let quantity of Milk and water be M and W respectively.
M : $\mathrm{W}=10$: 3
$3 \mathrm{M}=10 \mathrm{~W}$
In 26 litre of mixture
$M=26(10 / 13)=20$ litre and
W $=26(3 / 13)=6$ litre
8 litre of water is added.
Resulting ratio of M and W is
M-20:W-6+8 = 5 : 2
$2(\mathrm{M}-20)=5(\mathrm{~W}+2)$
$2 \mathrm{M}-40=5 \mathrm{~W}+10$
Multiplyin all the terms by 2 .
$4 \mathrm{M}-80=10 \mathrm{~W}+20$
Replacing 10 W with 3 M .
$4 \mathrm{M}-80=3 \mathrm{M}+20$
$M=100$
Hence W would be 30 .
Total quantity $=100+30=130$.
Option E is the correect answer.

Question 12

In a 90 litres mixture of milk and water, percentage of water is only $\mathbf{3 0 \%}$. The milkman gave 18 litres of this mixture to a customer and then added 18 litres of water to the remaining mixture. What is the percentage of milk in the final mixture?

A 64

B 48

C 52

D 68

E 56
Answer: E

Explanation:

In 90 liters of mixture,
Amount of water=
$=27$ liters.

$$
90 \times 70
$$

Amount of milk= 100 .
$=63$ liters.
Similarly, in 18 /iters of mixture,
Amount of water $=18 \times 30$
$=5.4$ liters.
Amount of mill 18×70
$=12.6$ liters.
After removing 18 liters of solution,
Amount of water=27-5.4=21.6 liters.
Amount of milk=63-12.6=50.4 liters.
After adding 18 liters of water,
Amount of water in the solution=21.6+18=39.6 liters.
Hence, Percentage of milk in solution $=50.4+39.6 \times 100$. $=56 \%$.
Hence, Option E is correct.

RBI Assistant Free Mock Test (With Solutions)

Question 13

Pure milk costs Rs. 16 per litre. After adding water the milkman sells the mixture at the rate of Rs. 15 per litre and thereby makes a profit. of 25%. In what respective ratio does he mix milk with water?

A 3:1

B 4:3

C 3:2

D 5:3

E 4:1
Answer: A

Explanation:

Profit $=25 \%$ hence effective Cost Price $=$ Selling Price * 10 or Selling Price -20%
Thus Effective Cost Price = Rs 12 per litre
(It can be said that the farmer is adding the Milk equivalent of Effective Cost Price and Water equivalent of Initial - Effective Cost Price) EffectiveCostPrice
Ratio $=$ Initial - EffectiveCostPrice
Ratio $={ }_{4}^{12}=3: 1$
Question 14
In Jar A, 140 litre milk was mixed with 40 litre water. Some of this mixture was taken out from Jar A and put in Jar B. If before the operation, there was 17 litres of milk in Jar B, and afterwards the resultant ratio between milk and water in jar B was $19: 3$ respectively, what was the amount of mixture that was taken out from Jar A ? (in litre)

A 21

B 36

C 46
D 18

E 27
Answer: E

Explanation:
Milk to water ratio in Jar A is $140: 40=7: 2$. Let the quantity of taken out mixture from jar $A=9 x$ litre.
Hence, milk will be $7 x$ and water will be $2 x$ litres.
Therefore, $(7 x+17) / 2 x=19 / 3$
=>x $=3$
Hence, amount taken out is $9 * 3=27$ litres.
Question 15
In Jar A, $\mathbf{1 8 0}$ litre milk was mix with 36 litre water. Some of this mixture was taken out from Jar A and put it in Jar B. If after adding 6 litres of water in the mixture, the respective ratio between milk and water in Jar B was 5:2 respectively, what was the amount of mixture that was taken out from Jar A ? (in litres)

A 24
B 54

C 30

D 36

E 42
Answer: D

Explanation:

The ratio of milk to water in Jar X
$=180: 36=5: 1$
Now, let 6 x litres of mixture be taken out from Jar X and put in Jar Y .
Then, milk in Jar $Y=5 x$
Water in $\operatorname{Jar} Y=x$
So, $5 x /(x+6)=5 / 2$
or, $10 x=(5 x+30)$
or, $5 x=30$
. $\mathrm{x}=6$
Hence the mixture that was taken out from Jar $X=6 x=6 \times 6=36$ litres

Download Highly Rated Banking APP

Question 16

There are 81 litre pure milk in a container. One third of milk is replaced by water in the container. Again onethird of mixture is extracted and equal amount of water is added. What is the ratio of milk to water in the new-mixture?

A 1:2

B 1:1

C 2:1

D 4:5

E None of these
Answer: D

Explanation:

using $\underset{\text { Total }}{\begin{array}{c}\text { QNRfinal }\end{array}}={ }_{\text {Total }}^{\text {QNRinitial }}\left(1-\begin{array}{c}\text { quantityreplaced } \\ \text { total }\end{array}\right)^{n}$

here QNR is the quantity which is only removed in whole process and hence here it is milk and ' n ' is the number of times the replacement process is repeated

So using the formula

$$
\begin{aligned}
& \begin{array}{l}
\text { QNRfinal } \\
\text { Total }
\end{array}=81 \times(1-\stackrel{27}{81})^{2} \\
& \begin{array}{c}
\text { QNRfinal }
\end{array} \\
& { }_{\text {Total }}
\end{aligned}=4 / 9
$$

So after two replacement cycles the ratio of Milk : Water $=4: 5$

A vessel contains 64 litres of mixture of milk and water in the ratio 7:3 respectively. 8 litres of mixture is replaced by 8 litres of milk. What is the ratio of milk and water in the resulting mixture?

A 59:21

B $35: 22$

C 64:23

D 65: 21

E None of these
Answer: A

Explanation:

Solution of milk and water in vessel $=64$ litres
ration of Milk:Water $=7: 3$
using

waterconcentration final total	$=\begin{gathered} \text { initialwaterconc. } \\ \text { total } \end{gathered}(1-$	$\left.\begin{array}{l} \text { removedvolume } \\ \text { total } \end{array}\right)^{n}$
waterconcentration final total	$=\stackrel{3}{10}\left(1-{ }^{8}{ }^{8}\right)^{1}$	
waterconcentrationfinal total	$=\stackrel{3}{10}(1-\stackrel{1}{8})^{n}$	
waterconcentrationfinal total	$\begin{array}{r} 21 \\ =80 \end{array}$	

water : milk in new solution after replacement $=21: 59$

Question 18

A vessel contains a mixture of Grape, Pineapple and Banana juices in the respective ratio of $4: 6: 5.15$ litres of this mixture is taken out and 8 litres of grape juice and 2 litres of/pineapple juice is added to the vessel. If the resultant quantity of grape juice is 10 litres less than the resultant quantity of pineapple juice. what was the initial quantity of mixture in the vessel ? (in litres)

A 120

B 150

C 105

D 135

E 90
Answer: D

Explanation:

let the amount of grape juice ,pineapple juice and banana juice in vessel be $4 y, 6 y, 5 y$ respectively
Now when we removed 15 ltr from vessel the juice will be removed in their given ratio i.e 4 Itr of grape juice will be removed and 6 ltrs of pineapple will be removed and 5 Itrs of banana juice will be removed and hence new quantities are

Grape juice $=4 y-4$
Pineapple juuce $=6 y-6$
Banana juice $=5 y-5$
Niw 8 Itrs of grape juuce is added and 2 Itrs of pineapple juice is added so new quantities of Juices in vessel are
Grape juice $=4 y+4$
Pineapple juuce $=6 y-4$

It is given that grape juice amount is 10 ltrs less than pineapple juice quantity .
So
$6 y-4-4 y-4=10$
$2 y=18$
$y=9$
Initial quantity in vessel $=15 \mathrm{y}=15 \times 9=135$ ltrs

Best Youtube Channel for Banking Preparation

Question 19

18 litres of pure water was added to a vessel containing 80 litres of pure milk. 49 litres of the resultant mixture was then sold and some more quantity of pure milk and pure water was added to the vessel in therespective ratio of $2: 1$. If the resultant respective ratio of milk and water in the vessel was $4: 1$, what was the quantity of pure milk added in the vessel ? (in litres)

A 4

B 8

C 10

D 12

E 2
Answer: A

Explanation:

18 litres of pure water was added to 80 litres of pure milk.

This we get a mixture where quantity of water $=18$ litre quantity of milk = 80 litre

Total quantity of the mixture $=18+80=98$ litre

49 litres of the resultant mixture was then sold. Since half of the mixture is removed and only the other half is remaining, quantity of water remaining $=18 / 2=9$ litre
Quantity of milk remaining $=80 / 2=40$ litre
Total quantity remaining $=49$ litre
some more quantity of pure milk and pure water was added to the vessel in the ratio 2:1
Let quantity of milk added $=2 x$
quantity of water added $=x$

Now,
quantity of water $=9+x$
quantity of milk $=40+2 x$
Given that ratio of milk and water in the vessel is now 4:1
=> $(40+2 x):(9+x)=4: 1$
=> $40+2 x=4(9+x)$
$=>40+2 x=36+4 x$
=> $2 x=4$
=> $x=2$
quantity of pure milk added in the vessel $=2 x=4$ litre

Two types of rice (type 1 and type 2) were mixed in the respective ratio of $1: 3$. The mixture was then sold @ 75.60 per kg to gain a profit of 20%. If the price of type 1 rice is Rs. 75 per kg , what is the price of type 2 price per kg ?

A Rs. 55

B Rs. 53
C Rs. 59

D Rs. 57

E Rs. 62

Answer: C

Explanation:

Profit $=0.2 \mathrm{CP}$
Profit $=\mathrm{SP}-\mathrm{CP}$
$1.2 \mathrm{CP}=\mathrm{SP}$
Hence, $\mathrm{CP}=(\mathrm{SP} / 1.2)=75.6 / 1.2=63$
Now, let the cost of type 1 rice is T1 and cost of type 2 be T2.

```
\(63=\frac{T 1+3 T 2}{4}\)
\(=(75+3 * x) / 4\)
\(x=59\)
```

Therefore, cost of type 2 price is 59 .

3 Free Mock for RBI Grade-B (With Solutions)

RBI Grade B Previous Papers PDF

RBI Grade-B Study Material (Download PDF)
 RBI Assistant Free Mock Test (With Solutions)

Download Highly Rated Banking APP
Best Youtube Channel for Banking Preparation

General Science Notes (Download PDF)
 100 Computer Awareness Tests For Banking Exams

General Knowledge Questions \& Answers (Download pdf)
Free Banking Study Material (15000 Solved Questions)
Daily Free Banking Online Test
200+ Free GK Tests for Banking exams
Daily Current Affairs for Banking exams PDF
200+ Banking Previous Papers (Download PDF)

