cracku

Permutation \& Combination Questions for NMAT

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature without the permission of cracku.in, application for which shall be made to support@cracku.in

Instructions
For the following questions answer them individually

Question 1

Letters of the word DIRECTOR are arranged in such a way that all the vowel come together .Find the No of ways making such arrangement?

A 4320

B 720

C 2160

D 120

E None of these

Answer: A

Explanation:

Word - DIRECTOR
So "I,E,O" are there are 3! ways to arrange the vowels
Now "D,R,C,T,R" are the remaining alphabets ,
Condition is that the vowels should always be together so we can assume the vowels as a single alphabet/unit say " $\mathrm{X}^{\prime \prime}$ (' X ' $=$ ' $1, \mathrm{E}, \mathrm{O}^{\prime}$) so now we have a new word- " D, R, C, T, R, X "
Possible arrangements for this word $=6$!
Thus total number of ways to rearrange DIRECTOR with vowels grouped together $=($ Possible arrangements of 'DRCTRX') \times (Possible arrangements of vowels)
$=6!\times 3!=720 \times 6=4320$
=> Ans - (A)

Question 2

In a box carrying one dozen of oranges one third have become bad.If 3 oranges taken out from the box random , what is the probability that at least one orange out of the 3 oranges picked up is good?

A $1 / 55$

B $54 / 55$

C $45 / 55$

D $3 / 55$

E None of these

Answer: B

Explanation:

Total number of oranges in the box $=12$
Number of ways of selecting 3 oranges out of 12 oranges, $n(S)=C_{3}^{\text {12 }}$
$=\underset{1 \times 2 \times 3}{12 \times 11 \times 10}=220$
Number of oranges which became bad $={ }_{3}^{12}=4$
Number of ways of selecting 3 oranges out of 4 bad oranges $=C_{3}^{4}=C_{1}^{4}=4$
Number of desired selection of oranges, $n(E) \Rightarrow 220-4=216$
$\therefore P(E)=\begin{array}{r}n(E) \\ n(S)\end{array}$
$\begin{gathered}216 \\ { }_{220}\end{gathered}=\begin{array}{r}54 \\ 55\end{array}$
=> Ans - (B)
Question 3
In how many different ways can the letters of the word TRUST' be arranged?

A 240

B 120

C 80

D 25

E None of these
Answer: E

Explanation:

Word = 'TRUST'
There are 5 letters and ' T ' is repeated.
If there are ' n ' letters and ' r ' are repeating, then number of ways of arranging them $=\begin{array}{r}n \text { ! } \\ r \text { ! }\end{array}$
\therefore Number of ways in which letters of the word 'TRUST' can be arranged
$={ }_{2}^{5!}=\underset{2 \times 1}{5 \times 4 \times 3 \times 2 \times 1}$
$=5 \times 4 \times 3=60$
=> Ans - (E)

If it is possible to make only one meaningful word from the second, the fourth, the sixth and the ninth letters of the word PROACTIVE, using each letter only once, second letter of that word is your answer. If more than one word can be formed your answer is M and if no such word can be formed your answer is N .

A A

B E

C T

D M

E N
Answer: D

Explanation:
Word $=$ PROACTIVE
2nd, 4th, 6th and 9th letters = R, A, T, E
No. of words that can be formed by using (R,A,T,E)
= Rate , Tear
Since only 2 words are formed
=> Ans = M

Question 6
In how many different ways can the letters of the word DRASTIC be arranged in such a way that the vowels always come together?

A 720

B 360

C 1440
D 540

E None of these
Answer: C

Explanation:

There are 7 letters in the word 'DRASTIC' including 2 vowels (A, I) and 5 consonants (D, R, S, T, C).
Considering the two vowels as 1 letter, we have 6 letters which can be arranged in 6 ! ways
But corresponding to each way of these arrangements, the vowels can be put together in 2 ! ways.
Hence, required number of words $=6!\times 2$!
$=720 * 2=1440$
Get 5 NMAT at just Rs. 499

Question 7

Which of the following set of fractions is in ascending order?

C $8 / 9,7 / 8,13 / 15,11 / 13$
D $7 / 8,8 / 9,11 / 13,13 / 15$

E None of these
Answer: B

Explanation:

Decimal equivalent of :
13
$15=0.87$
${ }_{13}^{11}=0.85$
$\stackrel{7}{8}=0.875$
${ }_{9}^{8}=0.89$
Clearly, $0.85<0.87<0.875<0.89$
=> ${ }_{13}^{11}<{ }_{15}^{13}<{ }_{8}^{7}<{ }_{9}^{8}$

Question 8

Certain number of pieces of an article are to be packed in boxes, such that each box contains 145 pieces. If after packing them in 32 boxes 25 pieces are left out, what was the number of pieces to be packed?

A 4566

B 4655

C 4465

D 4640

E None of these
Answer: E

Explanation:

No. of pieces
$=32$ * $145+25$
$=4640+25=4665$

Question 9

In how many different ways can the letters of the word 'HAPPY' be arranged ?

A 120

B 140

C 60

D 70

E None of these
Answer: C

Explanation:

The word HAPPY contains 5 letters in which letter 'P' comes twice.
=> Number of arrangements $=\begin{gathered}5! \\ 2!\end{gathered}$

Enroll To MBA exams crash course

Question 10
In how many different ways can the letters of the word 'FRANCE' be arranged?

A 2400
B 720

C 2005

D 5040

E None of these
Answer: B

Explanation:
The word FRANCE consists of 6 distinct letters
$=>$ Required number of arrangements $=6$!
$=720$

Take NMAT Mocks here (Adaptive pattern)
Get 5 NMAT at just Rs. 499
Enroll To MBA exams crash course
Take 3 Free CAT Mocks (With Solutions)
CAT previous papers (download pdf)
Free CAT Study Material
Take a free SNAP mock test

SNAP Previqus Papers (Download PDF)

