cracku

CAT 2020 LRDI Slot-3 Questions PDF

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature without the permission of cracku.in, application for which shall be made to support@cracku.in

Sixteen patients in a hospital must undergo a blood test for a disease. It is known that exactly one of them has the disease. The hospital has only eight testing kits and has decided to pool blood samples of patients into eight vials for the tests. The patients are numbered 1 through 16, and the vials are labelled A, B, C, D, E, F, G, and H. The following table shows the vials into which each patient's blood sample is distributed.

Patient	Vials	Patient	Vials
1	$\mathrm{~B}, \mathrm{D}, \mathrm{F}, \mathrm{H}$	9	$\mathrm{~A}, \mathrm{D}, \mathrm{F}, \mathrm{H}$
2	$\mathrm{~B}, \mathrm{D}, \mathrm{F}, \mathrm{G}$	10	$\mathrm{~A}, \mathrm{D}, \mathrm{F}, \mathrm{G}$
3	$\mathrm{~B}, \mathrm{D}, \mathrm{E}, \mathrm{H}$	11	$\mathrm{~A}, \mathrm{D}, \mathrm{E}, \mathrm{H}$
4	$\mathrm{~B}, \mathrm{D}, \mathrm{E}, \mathrm{G}$	12	$\mathrm{~A}, \mathrm{D}, \mathrm{E}, \mathrm{G}$
5	$\mathrm{~B}, \mathrm{C}, \mathrm{F}, \mathrm{H}$	13	$\mathrm{~A}, \mathrm{C}, \mathrm{F}, \mathrm{H}$
6	$\mathrm{~B}, \mathrm{C}, \mathrm{F}, \mathrm{G}$	14	$\mathrm{~A}, \mathrm{C}, \mathrm{F}, \mathrm{G}$
7	$\mathrm{~B}, \mathrm{C}, \mathrm{E}, \mathrm{H}$	15	$\mathrm{~A}, \mathrm{C}, \mathrm{E}, \mathrm{H}$
8	$\mathrm{~B}, \mathrm{C}, \mathrm{E}, \mathrm{G}$	16	$\mathrm{~A}, \mathrm{C}, \mathrm{E}, \mathrm{G}$

If a patient has the disease, then each vial containing his/her blood sample will test positive. If a vial tests positive, one of the patients whose blood samples were mixed in the vial has the disease. If a vial tests negative, then none of the patients whose blood samples were mixed in the vial has the disease.

Question 1

Suppose vial C tests positive and vials A, E and H test negative. Which patient has the disease?

A Patient 14
B Patient 8

C Patient 6

D Patient 2

Answer: C

Explanation:

The patients in
Vial A: 9, 10, 11, 12, 13, 14, 15, 16
Vial B: $1,2,3,4,5,6,7,8$.
Vial C: 5,6,7,8,13,14,15,16
Vial D:1,2,3,4,9,10,11,12
Vial E:3,4,7,8,11,12,15,16
Vial F:1,2,5,6,9,10,13,14
Vial G:2,4,6,8,10,12,14,16
Vial H:1,3,5,7,9,11,13,15

If vial C tests positive and vials A, E and H test negative then Patient 6 must have disease as all other patients in Vial C expect patient 6 are present in at least one of A, E, H.

Question 2

Suppose vial A tests positive and vials D and G test negative. Which of the following vials should we test next to identify the patient with the disease?

A Vial B

B VialE

C Vial C

D VialH
Answer: B

Explanation:

The patients in
Vial A: $9,10,11,12,13,14,15,16$
Vial B: $1,2,3,4,5,6,7,8$.
Vial C: 5,6,7,8,13,14,15,16
Vial D:1,2,3,4,9,10,11,12
Vial $\mathrm{E}: 3,4,7,8,11,12,15,16$
Vial F:1,2,5,6,9,10,13,14
Vial G:2,4,6,8,10,12,14,16
Vial H:1,3,5,7,9,11,13,15
Suppose vial A tests positive and vials D and G test negative then the patient who tested positive must be one of patient 13 or 15 . Patient 13 or 15 are not present in vial B. So, A is not the answer.

Both patients present in vial C. Even if tested positive or negative we can't know who has got the disease. So, C is not the answer.
Both patients present in vial H . Even if tested positive or negative we can't know who has got the disease. So, H is not the answer. only patient 15 is present in vial E, if tested positive then patient 15 has the disease else patient 13 as disease.

Hence Option 2 is correct.

Question 3

Which of the following combinations of test results is NOT possible?

A Vials A and E positive, vials C and D negative

B Vial B positive, vials C, F and H negative

C Vials A and G positive, vials D and E negative
D Vials B and D positive, vials F and H negative

Answer: A

Explanation:

The patients in
Vial A: 9, 10, 11, 12, 13, 14, 15, 16
Vial B: 1, 2, 3, 4, 5, 6, 7, 8.
Vial C: 5,6,7,8,13,14,15,16
Vial D:1,2,3,4,9,10,11,12
Vial E:3,4,7,8,11,12,15,16
Vial F:1,2,5,6,9,10,13,14
Vial G:2,4,6,8,10,12,14,16

Vial H:1,3,5,7,9,11,13,15
If vials C and D negative then no patient could test negative. Hence A is correct answer.

Take 3 Free CAT Mocks (With Solutions)
Question 4
Suppose one of the lab assistants accidentally mixed two patients' blood samples before they were distributed to the vials. Which of the following correctly represents the set of all possible numbers of positive test results out of the eight vials?

A $\{5,6,7,8\}$
B $\{4,5,6,7\}$
C $\{4,5,6,7,8\}$

D $\{4,5\}$
Answer: C

Explanation:
Let one of the patients, patient 1 or patient 16 has the disease and his blood is mixed with other them all 8 vials will tests positive. \Rightarrow 8 has to be one of the answers.

If patient 2 and patients 16 's blood is mixed of one of them has the disease then 7 of the 8 vials will test positive. So 7 has to be there in the option.

If 1 has the disease and 1, 7 are mixed then 6 out the 8 vials tests positive.
IF 1 has the disease and 1,9 are mixed then 5 of the 8 vials tests positive,
Now, let us assume that patient 1 has the disease if his blood is not mixed, then 4 vials will definitely show positive.
Hence 3 is the correct answer.
Instructions
XYZ organization got into the business of delivering groceries to home at the beginning of the last month. They have a two-day delivery promise. However, their deliveries are unreliable. An order booked on a particular day may be delivered the next day or the day after. If the order is not delivered at the end of two days, then the order is declared as lost at the end of the second day. XYZ then does not deliver the order, but informs the customer, marks the order as lost, returns the payment and pays a penalty for non-delivery. The following table provides details about the operations of XYZ for a week of the last month. The first column gives the date, the second gives the cumulative number of orders that were booked up to and including that day. The third column represents the number of orders delivered on that day. The last column gives the cumulative number of orders that were lost up to and including that day. It is known that the numbers of orders that were booked on the 11 th, 12 th, and 13 th of the last month that took two days to deliver were 4,6 , and 8 respectively

Day	Cumilative orders booked	Orders delivered on day	Cumilative orders lost
13th	219	11	91
14th	249	27	92
15th	277	23	94
16th	302	11	106
17th	327	21	118
18th	332	13	120
19th	337	14	129

Question 5

Among the following days, the largest fraction of orders booked on which day was lost?
A 15 th
B 16th

C 13th

D 14th
Answer: A

Explanation:

The cumulative orders booked by 19th are 337 and that of 18th are $332=>$ No. orders booked on 19th are 5
Similarly we can find the orders booked on that day till 14th.
Number of orders lost that were booked on 12th = Cumulative orders lost till 14th-Cumulative orders lost till 13th =92-91=1

Similarly, the number of orders lost till 17th can be found out.
Number of orders delivered on 13th are 11 out of which 4 are orders which were booked in 11th so, 7 must be the orders which were booked on 12th.

Similarly, we can find the orders which took 1day and 2 days to get delivered till 17 th.

Date	Order Placed	1-day Delivery	2-day Delivery	Lost	Delivery done on the date
11			4		
12	14	7	6	1	
13	31	21	8	2	11
14	30	15	3	12	27
15	28	8	8	12	23
16	25	13	10	2	11
17	25	3	13	9	21
18	5	1			13
19	5				14

Now, total number of orders booked on 12 th will be $7+6=1=14$.
Fraction of orders booked on 15th that were lost $=12 / 28$
Fraction of orders booked on 16th that were lost $=2 / 25$
Fraction of orders booked on 13th that were lost $=2 / 31$
Fraction of orders booked on 14 th that were lost $=8 / 30$.
\therefore Option A is correct answer.

Question 6

On which of the following days was the number of orders booked the highest?

A 12th

B 15th

C 13th

D 14th

Answer: C

Explanation:

The cumulative orders booked by 19th are 337 and that of 18th are $332=>$ No. orders booked on 19th are 5
Similarly we can find the orders booked on that day till 14th.
Number of orders lost that were booked on 12th $=$ Cumulative orders lost till 14 th-Cumulative orders lost till 13 th $=92-91=1$
Similarly, the number of orders lost till 17th can be found out.
Number of orders delivered on 13th are 11 out of which 4 are orders which were booked in 17 th so, 7 must be the orders which were booked on 12th.

Similarly, we can find the orders which took 1 day and 2 days to get delivered till 17 th.

Date	Order Placed	1-day Delivery	2-day Delivery	Lost	Delivery done on the date
11			4		
12	14	7	6	1	
13	31	21	8	2	11
14	30	15	3	12	27
15	28	8	8	12	23
16	25	13	10	2	11
17	25	3	13	9	21
18	5	1			13
19	5				14

Now, total number of orders booked on 12th/will be $7+6+1=14$.
The total number of orders placed on 13th $=21+8+2=31$
FRom the table we can determine that among options, number of orders booked on 13th are maximum.

CAT Previous Papers PDF

Question 7

The delivery ratio for a given day is defined as the ratio of the number of orders booked on that day which are delivered on the next day to the number of orders booked on that day which are delivered on the second day after booking. On which of the following days, was the delivery ratio the highest?

A 15th

B 16th
C 13th

D 14th
Answer: D

Explanation:

The cumulative orders booked by 19th are 337 and that of 18th are $332=>$ No. orders booked on 19th are 5
Similarly we can find the orders booked on that day till 14th.
Number of orders lost that were booked on 12th = Cumulative orders lost till 14th-Cumulative orders lost till 13th =92-91=1
Similarly, the number of orders lost till 17th can be found out.
Number of orders delivered on 13th are 11 out of which 4 are orders which were booked in 11th so, 7 must be the orders which were booked on 12th.

Similarly, we can find the orders which took 1day and 2 days to get delivered till 17th.

Date	Order Placed	1-day Delivery	2-day Delivery	Lost	Delivery done on the date
11			4		
12	14	7	6	1	
13	31	21	8	2	11
14	30	15	3	12	27
15	28	8	8	12	23
16	25	13	10	2	11
17	25	3	13	9	21
18	5	1			13
19	5				14

Now, total number of orders booked on-12th will be $7+6+1=14$.
From the table we can determine that among options, number of orders booked on 13th are maximum.
For 15 the delivery ratio $=8 / 8=1$

For 16 the delivery ratio $=13 / 10=1.3$
For 13 the delivery ratio $=21,8=2.625$
For 14 the delivery ratio $=15 / 3=5$
Hence Option D
Question 8
The average time taken to deliver orders booked on a particular day is computed as follows. Let the number of orders delivered the $(x+2 y)$
next day be x and the number of orders delivered the day after be y . Then the average time to deliver order is $(x+y)$. On which of the following days was the average time taken to deliver orders booked the least?

A 15th
B 13th

C 14th

D 16th
Answer: C

Explanation:

The cumulative orders booked by 19th are 337 and that of 18 th are $332=>$ No. orders booked on 19 th are 5
Similarly we can find the orders booked on that day till 14th.
Number of orders lost that were booked on 12th $=$ Cumulative orders lost till 14th-Cumulative orders lost till 13th $=92-91=1$
Similarly, the number of orders lost till 17th can be found out.
Number of orders delivered on 13th are 11 out of which 4 are orders which were booked in 11th so, 7 must be the orders which were booked on 12th.

Similarly, we can find the orders which took 1day and 2 days to get delivered till 17th.

Date	Order Placed	1-day Delivery	2-day Delivery	Lost	Delivery done on the date
11			4		
12	14	7	6	1	
13	31	21	8	2	11
14	30	15	3	12	27
15	28	8	8	12	23
16	25	13	10	2	11
17	25	3	13	9	21
18	5	1			13
19	5				14

Now, total number of orders booked on 12th will be $7+6+1=14$.
FRom the table we can determine that among options, number of orders booked on 13th are maximum.
Average time can be calculated as follows

	x	y	$x+2 y$	$x+y$	$(x+2 y) /(x+y)$
13	21	8	37	29	1.275862069
14	15	3	21	18	1.166666667
15	8	8	24	16	1.5
16	13	10	33	23	1.434782609

14 is the least

Instructions
A farmer had a rectangular land containing 205 trees. He distributed that land amonghis four daughters - Abha, Bina, Chitra and Dipti by
dividing the land into twelve plots along three rows (X, Y, Z) and four Columns $(1,2,3,4)$ as shown in the figure below:

The plots in rows X, Y, Z contained mango, teak and pine trees respectively. Each plot had trees in non-zero multiples of 3 or 4 and none of the plots had the same number of trees. Each daughter got an even number of plots. In the figure, the number mentioned in top left corner of a plot is the number of trees in that plot, while the letter in the bottom right corner is the first letter of the name of the daughter who got that plot (For example, Abha got the plot in row Y and column 1 containing 21 trees). Some information in the figure got erased, but the following is known:

1. Abha got 20 trees more than Chitra but 6 trees less than Dipti.
2. The largest number of trees in a plot was 32 , but it was not with Abha.
3. The number of teak trees in Column 3 was double of that in Column 2 but was half of that in Column 4.
4. Both Abha and Bina got a higher number of plots than Dipti.
5. Only Bina, Chitra and Dipti got corner plots.
6. Dipti got two adjoining plots in the same row.
7. Bina was the only one who got a plot in each row and each column.
8. Chitra and Dipti did not get plots which were adjacent to each other (either in row / column / diagonal).
9. The number of mango trees was double the number of teak trees.

Question 9
How many mango trees were there in total?

A 49
B 84

C 98

D 126
Answer: C

Explanation:

There are 12 plots and each of them got even number of plots. So, possible cases are 4,4,2,2 or 6,2,2,2.
From $4, A$ and B got more plots than D. So, the only possible case is A, B each got 4 and C, D each got 2 .
From $6, D$ has to get two adjacent plots and From 8 , plots of C, D are nit adjacent to each other $=>D$ must have got plots in $\mathrm{X} 3, \mathrm{X} 4$.
C already has two plots in X 1 , Z2. So, the corner plot Z4 should belong to B .
From 7, B has a plot in each row and each column. So, X2 should belong to B.
Now, out of the remaining Y2, Y3, Y4 and Z3 three plots belong to A and one belongs to B .
Till now B hasn't got any plot in Third column and 2nd row.
So, $Y 3$ belongs to B and $Y 2, Y 4, Z 3$ belongs to A.
Let the number of trees in Y 4 be 4 x from 3, number of trees in $\mathrm{Y} 3, \mathrm{Y} 2$ will be $-2 \mathrm{x}, \mathrm{x}$ respectively.
The number of teak trees $=7 x+21$
\therefore Number of mango trees $=14 x+42$
The table now looks like:

Each plot had trees in non-zero multiples of 3 or 4 and none of the plots had the same number of trees and from $2, B$ didn't have the largest number of trees in a plot $=>x<8$.
x can't be $7,5,3,2,1$ as for these cases at least one of $x, 2 x, 4 x$ is neither multiple of 3 or 4 .
x can be 6 or 4 .
If $x=6$, number of Teak trees will be 63 and Mango trees will be $126=>$ Number of Pine trees $=205-126-63=16$ but number of trees in $Z 3+Z 4>16$ so $x \neq 6$.
If $x=4$, Number of Teak trees=49 and Mango trees=98 => Number of Pine trees=58. Valid case.
Number of trees with $A=30+5 x=50$.
From 1, number of trees with $C, D=30,56$ respectively.
So, number of trees in Z2= 18 .
\therefore Number of trees with $B=205-50-30-56=69$.
From 2, largest number of trees in a plot is 32 . They can be in the plot of either B or D. If they are from B, they have to be from X2 but in that case number of trees in $\mathrm{Z1}=1$ which is neither a multiple of 3 or 4 .

So, highest number of trees in a plot are with D and it is 32 -=> number of trees in $X 3, X 4$ are 32,24 in any order.
So, number of trees in X2=98-56-12=30
\therefore Number of trees in $\mathrm{Z1}=69-30-28-8=3$.
The final table will look like:

\therefore Number of Mango trees=98.

Free CAT Exam Preparation App

Question 10

Which of the following is the correct sequence of trees received by Abha, Bina, Chitra and Dipti in that order?

A $50,69,30,56$

B 54, 57, 34, 60
C $44,87,24,50$
D $60,39,40,66$

Answer: A

Explanation:

There are 12 plots and each of them got even number of plots. So, possible cases are 4,4,2,2 or 6,2,2,2.
From 4, A and B got more plots than D. So, the only possible case is A, B each got 4 and C,D each got 2 .
From 6, D has to get two adjacent plots and From 8, plots of C, D are nit adjacent to each other => D must have got plots in $\mathrm{X} 3, \mathrm{X} 4$. C already has two plots in $\mathrm{X} 1, \mathrm{Z2}$. So, the corner plot Z 4 should belong to B . From 7, B has a plot in each row and each column. So, X2 should belong to B. Now, out of the remaining $\mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 4$ and Z 3 three plots belong to A and one belongs to B . Till now B hasn't got any plot in Third column and 2nd row. So, $Y 3$ belongs to B and $Y 2$, $Y 4$, Z3 belongs to A. Let the number of trees in Y 4 be 4 x from 3 , number of trees in $\mathrm{Y} 3, \mathrm{Y} 2$ will be $2 \mathrm{x}, \mathrm{x}$ respectively. The number of teak trees $=7 x+21$
\therefore Number of mango trees $=14 x+42$
The table now looks like:

Each plot had trees in non-zero multiples of 3 or 4 and none of the plots had the same number of trees and from $2, B$ didn't have the largest number of trees in a plot $=>x<8$.
x can't be $7,5,3,2,1$ as for these cases at least one of $x, 2 x, 4 x$ is neither multiple of 3 or 4 .
x can be 6 or 4 .
If $x=6$, number of Teak trees will be 63 and Mango trees will be $126=>$ Number of Pine trees= 205-126-63=16 but number of trees in $Z 3+Z 4>16$ so, $x \neq 6$.

If $x=4$, Number of Teak trees $=49$ and Mango trees=98 $=>$ Number of Pine trees=58. Valid case.

Number of trees with $A=30+5 x=50$.
From 1, number of trees with $C, D=30,56$ respectively.
So, number of trees in $Z 2=18$.
\therefore Number of trees with $B=205-50-30-56=69$.
From 2, largest number of trees in a plot is 32 . They can be in the plot of either B or D. If they are from B, they have to be from X2 but in that case number of trees in $\mathrm{Z1}=1$ which is neither a multiple of 3 or 4 .
So, highest number of trees in a plot are with D and it is 32 -=> number of trees in $\times 3, X 4$ are 32,24 in any order.
So, number of trees in X2 $=98-56-12=30$
\therefore Number of trees in $\mathrm{Z1}=69-30-28-8=3$.
The final table will look like:

Sequence of trees received by Abha, Bina, Chitra and Dipti is 50,69,30,56.

Question 11

How many pine trees did Chitra receive?

A 18
B 30

C 21

D 15
Answer: A
Explanation:
There are 12 plots and each of them got even number of plots. So, possible cases are 4,4,2,2 or 6,2,2,2.
From 4, A and B got more plots than D. So, the only possible case is A, B each got 4 and C, D each got 2 .
From 6, D has to get two adjacent plots and From 8, plots of C, D are nit adjacent to each other => D must have got plots in $\mathrm{X} 3, \mathrm{X} 4$.
C already has two plots in $\mathrm{X} 1, \mathrm{Z} 2$. So, the corner plot Z 4 should belong to B .
From 7, B has a plot in each row and each column. So, X2 should belong to B.
Now, out of the remaining $\mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 4$ and Z 3 three plots belong to A and one belongs to B .
Till now B hasn't got any plot in Third column and 2nd row.
So, $Y 3$ belongs to B and $Y 2, Y 4, Z 3$ belongs to A.
Let the number of trees in $Y 4$ be $4 x$ from 3 , number of trees in $Y 3, Y 2$ will be $2 x$, x respectively.
The number of teak trees $=7 x+21$

The table now looks like:

Each plot had trees in non-zero/multiples of 3 or 4 and none of the plots had the same number of trees and from $2, \mathrm{~B}$ didn't have the largest number of trees in a plot $=>\times<8$.
x can't be $7,5,3,2,1$ as for these cases at least one of $x, 2 x, 4 x$ is neither multiple of 3 or 4 .
x can be 6 or 4 .
If $x=6$, number of Teak trees will be 63 and Mango trees will be $126=>$ Number of Pine trees= 205-126-63=16 but number of trees in $Z 3+Z 4>16$ so, $x \neq 6$.

If $x=4$, Number of Teak trees=49 and Mango trees=98 => Number of Pine trees=58. Valid case.
Number of trees with $A=30+5 x=50$.
From 1, number of trees with $C, D=30,56$ respectively.
So, number of trees in $22=18$
\therefore Number of trees with $B=205-50-30-56=69$.
From 2, largest number of trees in a plot is 32. They can be in the plot of either B or D. If they are from B, they have to be from X2 but in that case number of trees in $\mathrm{Z1}=1$ which is neither a multiple of 3 or 4 .

So, highest number of trees in a plot are with D and it is 32 -=> number of trees in $\times 3, \mathrm{X} 4$ are 32,24 in any order.
So, number of trees in X2=98-56-12=30
\therefore Number of trees in $\mathrm{Z1}=69-30-28-8=3$.
The final table will look like:

	1		3		4
	12	30	32/24	24/32	98
	C	B	D	D	
	21	4	8	16	49
	A	A	B	A	
	3	18	9	28	58
	B	C	A	B	

Number of Plne trees received by Chitra $=18$.
Question 12
Who got the plot with the smallest number of trees and how many trees did that plot have?

A Dipti, 6 trees

B Bina, 3 trees

C Bina, 4 trees

D Abha, 4 trees
Answer: B

Explanation:

There are 12 plots and each of them got even number of plots. So, possible cases are $4,4,2,2$ or $6,2,2,2$.
From 4, A and B got more plots than D. So, the only possible case is A, B each got4 and C,D each got 2 .
From 6, D has to get two adjacent plots and From 8, plots of C, D are nit adjacent to each other => D must have got plots in X3, X4.
C already has two plots in $\mathrm{X} 1, \mathrm{Z} 2$. So, the corner plot Z 4 should belong to B.
From 7, B has a plot in each row and each column. So, X2 should belong to B.
Now, out of the remaining $Y 2, Y 3, Y 4$ and $Z 3$ three plots belong to A and one belongs to B.
Till now B hasn't got any plot in Third column and 2 nd row.
So, Y3 belongs to B and $Y 2, Y 4, Z 3$ belongs to A
Let the number of trees in $Y 4$ be $4 x$ from 3 , number of trees in $Y 3, Y 2$ will be $2 x, x$ respectively.
The number of teak trees $=7 x+21$
\therefore Number of mango trees $=14 x+42$
The table now looks like:

Each plot had trees in non-zero multiples of 3 or 4 and none of the plots had the same number of trees and from 2, B didn't have the largest number of trees in a plot $=>x<8$.
x can't be $7,5,3,2,1$ as for these cases at least one of $x, 2 x, 4 x$ is neither multiple of 3 or 4 .
x can be 6 or 4 .
If $x=6$, number of Teak trees will be 63 and Mango trees will be $126=>$ Number of Pine trees= 205-126-63=16 but number of trees in $Z 3+Z 4>16$ so, $x \neq 6$.

If $x=4$, Number of Teak trees=49 and Mango trees=98 => Number of Pine trees=58. Valid case.
Number of trees with $A=30+5 x=50$.
From 1, number of trees with $C, D=30,56$ respectively.
So, number of trees in Z2= 18.
\therefore Number of trees with $B=205-50-30-56=69$.
From 2, largest number of trees in a plot is 32. They can be in the plot of either B or D. If they are from B, they have to be from X2 but in that case number of trees in $\mathrm{Z1}=1$ which is neither a multiple of 3 or 4 .

So, highest number of trees in a plot are with D and it is 32 -=> number of trees in $X 3, X 4$ are 32,24 in any order.
So, number of trees in X2=98-56-12=30
\therefore Number of trees in $\mathrm{Z1}=69-30-28-8=3$.
The final table will look like:

[^0]
CAT Formulas PDF [Download Now]

Question 13

Which of the following statements is NOT true?

A Chitra got 12 mango trees

B Bina got 32 pine trees.
C Abha got 41 teak trees.

D Dipti got 56 mango trees

Answer: B

Explanation:

There are 12 plots and each of them got even number of plots. So, possible cases are 4,4,2,2 or 6,2,2,2.
From 4, A and B got more plots than D. So, the only possible case is A, B each got 4 and C,D each got 2 .
From $6, D$ has to get two adjacent plots and From 8 , plots of C, D are nit adjacent to each other $=>D$ must have got plots in $\mathrm{X} 3, \mathrm{X} 4$.
C already has two plots in $\mathrm{X} 1, \mathrm{Z} 2$. So, the corner plot Z 4 should belong to B .
From 7, B has a plot in each row and each column. So, X2 should belong to B.
Now, out of the remaining Y2, Y3, Y4 and Z3 three plots belong to A and one belongs to B.
Till now B hasn't got any plot in Third column and 2nd row.
So, $Y 3$ belongs to B and $Y 2, Y 4, Z 3$ belongs to A.
Let the number of trees in $Y 4$ be $4 x$ from 3, number of trees in $Y 3, Y 2$ will be $2 x$, x respectively.
The number of teak trees $=7 x+21$
\therefore Number of mango trees $=14 x+42$
The table now looks like:

Each plot had trees in non-zero multiples of 3 or 4 and none of the plots had the same number of trees and from $2, B$ didn't have the largest number of trees in a plot $=>x<8$.
x can't be $7,5,3,2,1$ as for these cases at least one of $x, 2 x, 4 x$ is neither multiple of 3 or 4 .
x can be 6 or 4 .
If $x=6$, number of Teak trees will be 63 and Mango trees will be $126=>$ Number of Pine trees=205-126-63=16 but number of trees in $Z 3+Z 4>16$ so, $x \neq 6$.

If $x=4$, Number of Teak trees=49 and Mango trees=98 => Number of Pine trees=58. Valid case.

Number of trees with $A=30+5 x=50$.
From 1, number of trees with $C, D=30,56$ respectively.
So, number of trees in $Z 2=18$.
\therefore Number of trees with $B=205-50-30-56=69$.
From 2, largest number of trees in a plot is 32. They can be in the plot of either B or D. If they are from B, they have to be from X2 but in that case number of trees in $\mathrm{Z1}=1$ which is neither a multiple of 3 or 4 .
So, highest number of trees in a plot are with D and it is 32 -=> number of trees in $X 3, X 4$ are 32,24 in any order.
So, number of trees in X2 $=98-56-12=30$
\therefore Number of trees in $\mathrm{Z1}=69-30-28-8=3$.
The final table will look like:

Bina got 28 pine trees, Option B is correct answer.

Question 14

Which column had the highest number of trees?

A 4

B 3

C Cannot be determined
D 2

Answer: A

Explanation:

There are 12 plots and each of them got even number of plots. So, possible cases are 4,4,2,2 or 6,2,2,2.
From 4, A and B got more plots than D. So, the only possible case is A, B each got 4 and C,D each got 2 .
From 6, D has to get two adjacent plots and From 8, plots of C, D are nit adjacent to each other => D must have got plots in $\mathrm{X} 3, \mathrm{X} 4$.
C already has two plots in X1, Z2. So, the corner plot Z4 should belong to B.
From $7, B$ has a plot in each row and each column. So, X2 should belong to B.
Now, out of the remaining $\mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 4$ and $Z 3$ three plots belong to A and one belongs to B .
Till now B hasn't got any plot in Third column and 2nd row.
So, $Y 3$ belongs to B and $Y 2, Y 4, Z 3$ belongs to A.
Let the number of trees in $Y 4$ be $4 x$ from 3, number of trees in $Y 3$, $Y 2$ will be $2 x, x$ respectively.
The number of teak trees $=7 x+21$
\therefore Number of mango trees $=14 x+42$
The table now looks like:

Each plot had trees in non-zero multiples of 3 or 4 and none of the plots had the same number of trees and from $2, B$ didn't have the largest number of trees in a plot $=>x<8$.
x can't be 7,5,3,2,1 as for these cases at least one of $x, 2 x, 4 x$ is neither multiple of 3 or 4 .
x can be 6 or 4 .
If $x=6$, number of Teak trees will be 63 and Mango trees will be $126=>$ Number of Pine trees=205-126-63=16 but number of trees in $Z 3+Z 4>16$ so, $x \neq 6$.

If $x=4$, Number of Teak trees=49 and Mango trees=98 => Number of Pine trees $=58$. Valid case.
Number of trees with $A=30+5 x=50$.
From 1, number of trees with $C, D=30,56$ respectively.
So, number of trees in $Z 2=18$.
\therefore Number of trees with $B=205-50-30-56=69$.
From 2, largest number of trees in a plot is 32. They can be in the plot of either B or D. If they are from B, they have to be from X2 but in that case number of trees in $Z 1=1$ which is neither a multiple of 3 or 4 .

So, highest number of trees in a plot are with Q and it is 32 -=> number of trees in $\mathrm{X} 3, \mathrm{X} 4$ are 32,24 in any order.
So, number of trees in X2=98-56-12=30
\therefore Number of trees in $\mathrm{Z1}=69-30-28-8=3$.
The final table will look like:

Column 1,2,3,4 have 36, 52, 49, 68 trees respectively.
Hence A is correct answer.

Instructions

The Hi-Lo game is a four-player game played in six rounds. In every round, each player chooses to bid Hi or Lo. The bids are made simultaneously. If all four bid Hi , then all four lose 1 point each. If three players bid Hi and one bids Lo , then the players bidding Hi gain 1 point each and the player bidding Lo loses 3 points. If two players bid Hi and two bid Lo, then the players bidding Hi gain 2 points each and the players bidding Lo lose 2 points each. ff one player bids Hi and three bid Lo, then the player bidding Hi gains 3 points and the players bidding Lo lose 1 point each. If all four bid Lo, then all four gain 1 point each. Four players Arun, Bankim, Charu, and Dipak played the Hi-Lo game. The following facts are known about their game:

1. At the end of three rounds, Arun had scored 6 points, Dípak had scored 2 points, Bankim and Charu had scored -2 points each.
2. At the end of six rounds, Arun had scored 7 points, Bankim and Dipak had scored -1 point each, and Charu had scored -5 points.
3. Dipak's score in the third round was less than his score in the first round but was more than his score in the second round.
4. In exactly two out of the six rounds, Arun was the only player who bid Hi .

Question 15

What were the bids by Arun, Bankim, Charu and Dipak, respectively in the first round?

A $\mathrm{Hi}, \mathrm{Lo}, \mathrm{Lo}, \mathrm{Hi}$
B Hi, Lo, Lo, Lo

C $\mathrm{Hi}, \mathrm{Hi}, \mathrm{Lo}, \mathrm{LO}$
D Lo, Lo, Lo, Hi
Answer: A

Explanation:

Let 'H' represents Hi and 'L' represents Lo.
Given if they bid
Case 1: HHHH then all players gets -1 points.
Case 2: $\mathrm{HHHL}=>\mathrm{H}$ gets +1 and L gets -3 .
Case 3: HHLL => H gets +2 and L gets -2 .
Case 4: $\mathrm{HLLL}=>\mathrm{H}$ gets +3 and L gets -1 .
Case 5 : LLLL => every player gets +1 .
From the given information we can draw the following table:

	R1	R2	R3	T1	R4	R5	R6	T2
A				6				7
B				-2				-1
C				-2				-5
D	D1	D3	D2	2				-1

**T1 is the cumulative of points till Round 3 and T2 is sum of points till round 6 .
**Arun, Bankim, Charu, and Dipak are represented by A, B, C, D respectively.
From point 3, D1>D2>D3
D scored 2 points till round R3 and D1>D3>D2 the possible scenarios are :
Case D1: 3,2,-3
In this case the points of A in R1, R3, R2 will be $-1,2 /-2,1$ in any possible combination the sum will not be 6 . So, this case is invalid.
Case D2: 2,1,-1
In this case the points of A in $R 1, R 3$, $R 2$ will be $2 /-2,1 /-3,-1 / 3$ so, if the points in $R 1, R 3, R 2$ are $2,1,3$ the case is valid and no other cases are possible.

Case D3: 3,1,-2
In this case the points of A in $R 1, R 3$, $R 2$ will be $-1,1 /-3 / 1,2 /-2$ in any possible combination the sum will not be 6 . So, this case is invalid.
\therefore Points of A, D in $(R 1, R 2, R 3)$ are $(2,3,1)$ and $(2,-1,1)$ respectively.
Since A got +3 in $R 2$, he is only the one to bid h in $R 2$ and points of B and C in round 2 are $-1,-1$ i.e they bid L, L.
Since A and D got 2 points each in $R 1, C$ and B must have got $-2,-2$ i.e they bid L, L.
Since A and D got 1 point in $R 3, C$ and B must also have got 1 in R3 i.e they bid L, L.
With this data, the table now looks like:

	R1	R2	R3	T1	R4	R5	R6	T2
A	2 H	3 H	1 L	6				7
B	-2	-1 L	1 L	-2				
C	-2 L	-1 L	1 L	-2			-1	
D	L H	-1 L	1 L	2			-5	

No information is given about the individual scores in R4, R5, R6.
Given In exactly two out of the six rounds, Arun was the only player who bid Hi .
Let R.x, R.y, R.z represent R4, R5, R6 in any order.
Let A bid H in R. $\mathrm{x}=>\mathrm{B}, \mathrm{C}, \mathrm{D}$ bid L .
The table now looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	2 H	3 H	1 L	6	3 H			7
B	-2 L	-1 L	1 L	-2	-1 L			
C	-2 L	-1 L	1 L	-2	-1 L			
D	L	-1 L	1 L	2	-1 L			

For A, R. $x+$ R. $y+R . z=1=>$ R. $y+R . z=-2$
For B, R.x+R.y+R.z=1 => R. $y+R . z=2$
For C, R. $x+$ R. $y+R . z=-3=>$ R. $y+R . z=-2$
For D, R. $x+$ R. $y+$ R. $z=-3 .=>$ R. $y+$ R. $z=-2$
(R.y, R.z) for A can be $(-3,1)$ or $(-1,-1)$

Case A1:
If for A, (R.y, R.z) $=(-3,1)$
Since for both C,D: R.y+R.z=-2
We can't get any combination such that the total points of B,C,D are obtained.
Case A2:
If for A, (R.y, R. z) $=(-1,-1)$.the (R.y, R.z) of B, C, D can be $(3,-1),(-1,-1),(-1,-1)$ and they must have bid (H,H), (L, H), (L, H) respectively while A must have bid (L, H)

Hence this case is valid.
The final table looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	$\begin{aligned} & \hline 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~L} \end{aligned}$	6	3	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	7
B	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	3	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1
C	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-5
D	$\begin{aligned} & 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1

The bids by Arun, Bankim, Charu and Dipak, respectively in the first round are HLLH.
Hence Option A is correct.
Top-500 Free CAT Questions (With Solutions)

Question 16

In how many rounds did Arun bid Hi?

Answer:4

Explanation:

Let 'H' represents Hi and 'L' represents Lo
Given if they bid
Case 1: HHHH then all players gets -1 points.
Case 2: $\mathrm{HHHL}=>\mathrm{H}$ gets +1 and L gets -3 .

Case 3: $\mathrm{HHLL}=>\mathrm{H}$ gets +2 and L gets -2 .
Case 4: HLLL $=>+H$ gets +3 and L gets -1 .
Case 5 : LLLL \Rightarrow every player gets +1 .
From the given information we can draw the following table:

	R1	R2	R3	T1	R4	R5	R6	T2
A				6				7
B				-2				
C				-2				-5
D		D1	D3	D2	2			

**T1 is the cumulative of points till Round 3 and T 2 is sum of points till round 6 . (
**Arun, Bankim, Charu, and Dipak are represented by A, B, C, D respectively.
From point 3, D1>D2>D3
D scored 2 points till round R3 and D1>D3>D2 the possible scenarios are
Case D1: 3,2,-3
In this case the points of A in R1, R3, R2 will be $-1,2 /-2,1$ in any possible combination the sum will not be 6 . So, this case is invalid.
Case D2: 2,1,-1
In this case the points of A in $R 1, R 3$, $R 2$ will be $2 /-2,1 /-3,-1 / 3$ so, if the points in $R 1, R 3, R 2$ are $2,1,3$ the case is valid and no other cases are possible.

Case D3: 3,1,-2
In this case the points of A in $R 1, R 3, R 2$ will be $-1,1 /-3 / 1,2 /-2$ in any possible combination the sum will not be 6 . So, this case is invalid. \therefore Points of A, D in $(R 1, R 2, R 3)$ are $(2,3,1)$ and $(2,1,1)$ respectively.

Since A got +3 in $R 2$, he is only the one to bid h in $R 2$ and points of B and C in round 2 are $-1,-1$ i.e they bid L, L.
Since A and D got 2 points each in R1, C and B must have got $-2,-2$ i.e they bid L, L.
Since A and D got 1 point in R3, C and B must atso have got 1 in R3 i.e they bid L, L.
With this data, the table now looks like:

	R1	R2	R3	T1	R4	R5	R6	T2
A	2 H	3 H	1 L	6				7
B	-2 L	-1 L	1 L	-2				
C	-2 L	-1 L	1 L	-2			-1	
D	L H	-1 L	1 L	2			-5	

No information is given about the individual scores in R4, R5, R6.
Given In exactly two out of the six rounds, Arun was the only player who bid Hi .
Let R.x, R.y, R.z represent R4, R5, R6 in any order.
Let A bid H in R. $\mathrm{x}=>\mathrm{B}, \mathrm{C}, \mathrm{D}$ bid L .
The table now looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	2 H	3 H	1 L	6	3 H			7
B	-2 L	-1 L	1 L	-2	-1 L			
C	-2 L	-1 L	1 L	-2	-1 L			
D	L	-1 H	1 L	2	-1 L			

For A, R.x+R.y+R.z=1 => R.y+R.z=-2
For B, R. $x+$ R. $y+$ R. $z=1=>$ R. $y+R . z=2$
For $C, R . x+R . y+R . z=-3=>R . y+R . z=-2$
For D, R. $x+$ R. $y+$ R. $z=-3 .=>$ R. $y+R . z=-2$
(R.y, R.z) for A can be ($-3,1$) or ($-1,-1$)

Case A1:
If for A, (R.y, R.z) $=(-3,1)$
Since for both C,D: R.y+R.z=-2
We can't get any combination such that the total points of B,C,D are obtained.
Case A2:
If for A, (R.y, R.z) $=(-1,-1)$.the (R.y, R.z) of B,C,D can be $(3,-1),(-1,-1),(-1,-1)$ and they must have bid $(H, H),(L, H),(L, H)$ respectively while A must have bid (L, H)

Hence this case is valid.
The final table looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	$\begin{aligned} & \hline 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	1	6	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	7
B	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	1	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1
C	$\begin{aligned} & \hline-2 \\ & L \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$		-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & -1 \\ & \mathrm{H} \end{aligned}$	-5
D	$\begin{aligned} & \hline 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$		2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1

Arun bid high in R1,R2, R.x, R.z hence, 4 is correct answer.
Question 17
In how many rounds did Bankim bid Lo?

Answer:4

Explanation:

Let 'H' represents Hi and 'L' represents Lo.
Given if they bid
Case 1: HHHH then all players gets -1 points.
Case 2: $\mathrm{HHHL}=>H$ gets +1 and L gets -3 .
Case 3: HHLL => H gets +2 and L gets -2 .
Case 4: $\mathrm{HLLL}=>\mathrm{H}$ gets +3 and L gets -1 .
Case 5 : LLLL => every player gets +1 .

From the given information we can draw the following table

	R1	R2	R3	T1	R4	R5	R6	T2
A				6				7
B				-2				-1
C				-2				-5
D	D1	D3	D2	2				-1

**T1 is the cumulative of points till Round 3 and T2 is sum of points till round 6.
**Arun, Bankim, Charu, and Dipak are represented by A, B, C, D respectively.
From point 3, D1>D2>D3
D scored 2 points till round R3 and D1>D3>D2 the possible scenarios are :
Case D1: 3,2,-3
In this case the points of A in R1, R3, R2 will be $-1,2 /-2,1$ in any possible combination the sum will not be 6 . So, this case is invalid.
Case D2: 2, 1,-
In this case the points of A in R1, R3, R2 will be $2 /-2,1 /-3,-1 / 3$ so, if the points in R1, R3, R2 are $2,1,3$ the case is valid and no other cases are possible.

Case D3: 3,1,-2
In this case the points of A in R1, R3, R2 will be $-1,1 /-3 / 1,2 /-2$ in any possible combination the sum will not be 6 . So, this case is invalid. \therefore Points of A,D in (R1,R2,R3) are ($2,3,1$) and $(2,-1,1)$ respectively. Since A got +3 in $R 2$, he is only the one to bid h in $R 2$ and points of B and C in round 2 are $-1,-1$ i.e they bid L, L. Since A and D got 2 points each in R1, C and B must have got $-2,-2$ i.e they bid L, L. Since A and D got 1 point in $R 3, C$ and B must also have got 1 in R3 i.e they bid L, L. With this data, the table now looks like:

	R1	R2	R3	T1	R4	R5	R6	T2
A	$\begin{array}{\|l\|} \hline 2 \\ \mathrm{H} \end{array}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~L} \end{aligned}$	6				7
B	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2				-1
C	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2				-5
D	$\begin{aligned} & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	2				-1

No information is given about the individual scores in R4, R5, R6.
Given In exactly two out of the six rounds, Arun was the only player who bid Hi .
Let R.x, R.y, R.z represent R4, R5, R6 in any order.
Let A bid H in R. $\mathrm{x}=>\mathrm{B}, \mathrm{C}, \mathrm{D}$ bid L .
The table now looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	2 H	3 H	1 L	6	3 H			7
B	-2 L	-1 L	1 L	-2	-1 L			
C	-2 L	-1 L	1 L	-2	-1 L			
D	L	-1 H	1 L	2	-1 L			

For A, R.x+R.y+R.z=1 => R.y+R.z=-2
For B, R.x+R.y+R.z=1 => R. $y+R . z=2$
For $C, R . x+R . y+R . z=-3=>R . y+R . z=-2$
For D, R. $x+$ R. $y+R . z=-3 .=>$ R. $y+R . z=-2$
(R.y, R.z) for A can be $(-3,1)$ or $(-1,-1)$

Case A1:
If for A, (R.y, R.z)=(-3,1)
Since for both C,D: R.y+R.z=-2
We can't get any combination such that the total points of B,C,D are obtained.
Case A2:
If for A, (R.y, R. z) $=(-1,-1)$.the (R.y, R.z) of B, C, D can be $(3,-1),(-1,-1),(-1,-1)$ and they must have bid (H,H), (L,H), (L,H) respectively while A must have bid (L, H)

Hence this case is valid.
The final table looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	$\begin{aligned} & \hline 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~L} \end{aligned}$	6	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & -1 \\ & H \end{aligned}$	7
B	-2	$\begin{gathered} -1 \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -1 \\ & \mathrm{H} \end{aligned}$	-1
C	-2	$\begin{gathered} -1 \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} -1 \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & -1 \\ & H \end{aligned}$	-5
D	2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~L} \end{aligned}$	2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1

Bikram bid Lo in R1,R2,R3,R.x. Hence 4 is correct answer.
Question 18
In how many rounds did all four players make identical bids?

Answer:2

Explanation:

Let 'H' represents Hi and 'L'represents Lo.
Given if they bid
Case 1: HHHH then all players gets -1 points.
Case 2 : $\mathrm{HHHL}=>\mathrm{H}$ gets +1 and L gets -3 .
Case 3: HHLL \Rightarrow H gets +2 and L gets -2 .
Case 4: HLLL => H gets +3 and L gets -1 .
Case 5: LLLL => every player gets +1 .

From the given information we can draw the following table:

	R1	R2	R3	T1	R4	R5	R6	T2
A				6				
B				-2				
C				-2				
D	D1	D3	D2	2				

**T1 is the cumulative of points till Round 3 and T2 is sum of points tith round 6.
**Arun, Bankim, Charu, and Dipak are represented by A, B, C, D respectively.
From point 3, D1>D2>D3
D scored 2 points till round R3 and D1>D3>D2 the possible scenarios are
Case D1: 3,2,-3
In this case the points of A in $R 1, R 3$, R2 will be $-1,2 /-2,1$ in any possible combination the sum will not be 6 . So, this case is invalid.
Case D2: 2,1,-1
In this case the points of A in $R 1, R 3, R 2$ will be $2 /-2,1 /-3,-1 / 3$ so, if the points in $R 1, R 3, R 2$ are $2,1,3$ the case is valid and no other cases are possible.

Case D3: 3,1,-2
In this case the points of A in $R 1, R 3$, $R 2$ will be $-1,1 /-3 / 1,2 /-2$ in any possible combination the sum will not be 6 . So, this case is invalid. \therefore Points of A,D in (R1,R2,R3) are ($2,3,1$) and ($2,-1,1$) respectively.
Since A got +3 in $R 2$, he is only the one to bid h in $R 2$ and points of B and C in round 2 are $-1,-1$ i.e they bid L, L.
Since A and D got 2 points each in-R1, C and B must have got $-2,-2$ i.e they bid L, L.
Since A and D got 1 point in R3, C and B must also have got 1 in R3 i.e they bid L, L.
With this data, the table now looks like:

	R1	R2	R3	T1	R4	R5	R6	T2
A	$\begin{array}{\|l\|} \hline 2 \\ \mathrm{H} \end{array}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~L} \end{aligned}$	6				7
B	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2				-1
C	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2				-5
D	$\begin{aligned} & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	2				-1

No information is given about the individual scores in R4, R5, R6.
Given In exactly two out of the six rounds, Arun was the only player who bid Hi.
Let R.x, R.y, R.z represent R4, R5, R6 in any order.
Let A bid H in R. $\mathrm{x}=>\mathrm{B}, \mathrm{C}, \mathrm{D}$ bid L .
The table now looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	2 H	3 H	1 L	6	3 H			7
B	-2 L	-1 L	1 L	-2	-1 L			
C	-2 L	-1 L	1 L	-2	-1 L			
D	L	-1 L	1 L	2	-1 L			

For A, R.x+R.y+R.z=1 => R.y+R.z=-2
For B, R.x+R.y+R.z=1 => R. $y+R . z=2$
For C, R. $x+$ R. $y+R . z=-3=>$ R. $y+R . z=-2$
For D, R. $x+$ R. $y+$ R. $z=-3 .=>$ R. $y+R . z=-2$
(R.y, R.z) for A can be $(-3,1)$ or $(-1,-1)$

Case A1:
If for A, (R.y, R.z) $=(-3,1)$
Since for both C,D: R.y + R. $z=-2$
We can't get any combination such that the total points of B,C,D are obtained.
Case A2:
If for $A,(R . y, R . z)=(-1,-1)$.the (R.y, R.z) of B, C, D can be $(3,-1),(-1,-1),(-1,-1)$ and they must have bid $(H, H),(L, H),(L, H)$ respectively while A must have bid (L, H)

Hence this case is valid.
The final table looks like

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	$\begin{aligned} & \hline 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	1	6	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	7
B	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	1	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1
C	$\begin{aligned} & \hline-2 \\ & L \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$		-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & -1 \\ & \mathrm{H} \end{aligned}$	-5
D	$\begin{aligned} & \hline 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$		2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1

All the players made identical bids in R3 and R.z

Free CAT Study Material

Question 19

In how many rounds did Dipak gain exactly 1 point?

Answer:1

Explanation:

Let 'H' represents Hi and 'L' represents Lo.
Given if they bid
Case 1: HHHH then all players gets -1 points.
Case 2: $\mathrm{HHHL}=>\mathrm{H}$ gets +1 and L gets -3 .
Case 3: HHLL => H gets +2 and L gets -2 .

Case 4: $\mathrm{HLLL}=>\mathrm{H}$ gets +3 and L gets -1 .
Case 5 : LLLL $=>$ every player gets +1 .
From the given information we can draw the following table:

	R1	R2	R3	T1	R4	R5	R6	T2
A				6				
B				-2				-1
C				-2				-5
D	D1	D3	D2	2				

**T1 is the cumblative of points till Round 3 and $T 2$ is sum of points till round 6 .
**Arun, Bankim, Charu, and Dipak are represented by A, B, C, D respectively.
From point 3, D1>D2>D3
D scored 2 points till round R3 and D1>D3>D2 the possible scenarios are :
Case D1: 3,2,-3
In this case the points of A in R1, R3, R2 will be $-1,2 /-2,1$ in any possible combination the sum will not be 6 . So, this case is invalid.
Case D2: 2,1,-1
In this case the points of A in $R 1, R 3, R 2$ will be $2 /-2,1 /-3,-1 / 3$ so, if the points in $R 1, R 3, R 2$ are $2,1,3$ the case is valid and no other cases are possible.
Case D3: 3,1,-2
In this case the points of A in $R 1, R 3, R 2$ will be $-1,1 /-3 / 1,2 /-2$ in any possible combination the sum will not be 6 . So, this case is invalid. \therefore Points of A, D in $(R 1, R 2, R 3)$ are $(2,3,1)$ and $(2,-1,1)$ respectively.
Since A got +3 in $R 2$, he is only the one to bid h in $R 2$ and points of B and C in round 2 are $-1,-1$ i.e they bid L, L.
Since A and D got 2 points each in R1, C and B must have got $-2,-2$ i.e they bid L, L.
Since A and D got 1 point in R3, C and B must also have got 1 in R3 i.e they bid L, L.
With this data, the table now looks like:

	R1	R2	R3	T1	R4	R5	R6	T2
A	2 H	3 H	1 L	6				7
B	-2 L	-1 L	1 L	-2				
C	-2 L	-1 L	1 L	-2			-1	
D	L H	-1 L	1 L	2			-5	

No information is given about the individual scores in R4, R5, R6.
Given In exactly two out of the six rounds, Arunwas the only player who bid Hi.
Let R.x, R.y, R.z represent R4, R5, R6 in any order.
Let A bid H in R. $\mathrm{x}=>\mathrm{B}, \mathrm{C}, \mathrm{D}$, bid L .
The table now looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	2 H	3 H	1 L	6	3 H			7
B	-2 L	-1 L	1 L	-2	-1 L			
C	-2 L	-1 L	1 L	-2	-1 L			
D	L	-1 H	1 L	2	-1 L			

For A, R.x+R.y+R.z=1 => R.y+R.z=-2
For B, R.x+R.y+R.z=1 => R. $y+R . z=2$
For C, R. $x+$ R. $y+R . z=-3=>$ R. $y+R . z=-2$
For D, R. $x+$ R. $y+R . z=-3 .=>$ R. $y+R . z=-2$
(R.y, R.z) for A can be $(-3,1)$ or $(-1,-1)$

Case A1:
If for A, (R.y, R.z) $=(-3,1)$
Since for both C,D: R.y+R.z=-2
We can't get any combination such that the total points of B,C,D are obtained.
Case A2:
If for A, (R.y, R. z) $=(-1,-1)$.the (R.y, R.z) of B, C, D can be $(3,-T),(-1,-1),(-1,-1)$ and they must have bid (H,H), (L,H), (L,H) respectively while A must have bid (L, H)

Hence this case is valid.
The final table looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	2	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	6	$\begin{aligned} & 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & -1 \\ & H \end{aligned}$	7
B	-2	$\begin{gathered} -1 \\ L \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & -1 \\ & \mathrm{H} \end{aligned}$	-1
C	-2	$\begin{gathered} -1 \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} -1 \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & -1 \\ & H \end{aligned}$	-5
D	2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1

Deepak got exactly one point in only R3.
Hence 1 is correct answer.
Question 20
In which of the following rounds, was Arun DEFINITELY the only player to bid Hi ?

A Second

B Third

C Fourth

D First

Answer: A

Explanation:

Let 'H' represents Hi and 'L' represents Lo.

Given if they bid

Case 1: HHHH then all players gets -1 points.
Case 2: $\mathrm{HHHL}=>\mathrm{H}$ gets +1 and L gets -3 .
Case 3: HHLL => H gets +2 and L gets -2 .
Case 4: HLLL => H gets +3 and L gets -1 .
Case 5: LLLL => every player gets +1 .
From the given information we can draw the following table:

	R1	R2	R3	T1	R4	R5	R6	T2
A				6				7
B				-2				-1
C				-2				-5
D	D1	D3	D2	2				-1

**T1 is the cumulative of points till Round 3 and T 2 is sum of points till round 6 .
**Arun, Bankim, Charu, and Dipak are represented by A, B, C, D respectively.
From point 3, D1>D2>D3
D scored 2 points till round R3 and D1>D3>D2 the possible scenarios are :
Case D1: 3,2,-3
In this case the points of A in R1, R3, R2 will be $-1,2 /-2,1$ in any possible combination the sum will not be 6 . So, this case is invalid.
Case D2: 2,1,-1
In this case the points of A in $R 1, R 3, R 2$ will be $2 /-2,1 /-3,-1 / 3$ so, if the points in $R 1, R 3, R 2$ are $2,1,3$ the case is valid and no other cases are possible.

Case D3: 3,1,-2
In this case the points of A in R1, R3, R2 will be $-1,1 /-3 / 1,2 /-2$ in any possible combination the sum will not be 6 . So, this case is invalid.
\therefore Points of A, D in $(R 1, R 2, R 3)$ are $(2,3,1)$ and $(2,-1,1)$ respectively.
Since A got +3 in $R 2$, he is only the one to bid h in $R 2$ and points of B and C in round 2 are $-1,-1$ i.e they bid L, L.
Since A and D got 2 points each in R1, C and B must have got $-2,-2$ i.e they bid L, L.
Since A and D got 1 point in R3, C and B must also have got 1 in R3 i.e they bid L, L With this data, the table now looks like:

	R1	R2	R3	T1	R4	R5	R6	T2
A	$\begin{aligned} & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	6				7
B	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & L \end{aligned}$	-2				-1
C	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2				-5
D	$\begin{aligned} & 2 \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \hline-1 \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	2				-1

No information is given about the individual scores in R4, R5, R6.
Given In exactly two out of the six rounds, Arun was the only player who bid Hi. Let R.x, R.y, R.z represent R4, R5, R6 in any order. Let A bid H in R. $\mathrm{x}=>\mathrm{B}, \mathrm{C}, \mathrm{D}$ bid L .

The table now looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	2 H	3 H	1 L	6	3 H			7
B	-2 L	-1 L	1 L	-2	-1 L			
C	-2 L	-1 L	1 L	-2	-1 L			
D	2	-1 L	1 L	2	-1 L			

For A, R.x+R.y+R.z=1 $=>$ R. $y+R . z=-2$
For B, R. $x+$ R. $y+R . z=1 \Rightarrow$ R. $y+R . z=2$
For $C, R . x+R . y+R . z=-3=>R . y+R . z=-2$
For D, R. $x+$ R. $y+$ R. $z=-3 .=>$ R. $y+R . z=-2$
(R.y, R.z) for A can be $(-3,1)$ or $(-1,-1)$

Case A1:
If for $A,(R . y, R . z)=(-3,1)$
Since for both C,D: R.y+R.z=-2
We can't get any combination such that the total points of B,C,D are obtained.
Case A2:
If for A, (R.y, R.z) $=(-1,-1)$.the (R.y, R.z) of B, C, D can be $(3,-1),(-1,-1),(-1,-1)$ and they myst have bid $(H, H),(L, H),(L, H)$ respectively while A must have bid (L, H)

Hence this case is valid.
The final table looks like:

	R1	R2	R3	T1	R.x	Ry	R.z	T2
A	$\begin{aligned} & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	6	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & H \end{aligned}$	7
B	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & -1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{~L} \end{aligned}$	-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1
C	$\begin{aligned} & \hline-2 \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} -1 \\ \mathrm{~L} \end{gathered}$		-2	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-5
D	$\begin{aligned} & 2 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline-1 \\ & \mathrm{~L} \end{aligned}$		2	$\begin{gathered} -1 \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} -1 \\ L \end{gathered}$	$\begin{aligned} & \hline-1 \\ & \mathrm{H} \end{aligned}$	-1

R2 is correct answer.

Instructions

A survey of 600 schools in India was conducted to gather information about their online teaching learning processes (OTLP). The following four facilities were studied.

F1: Own software for OTLP
F2: Trained teachers for OTLP
F3: Training materials for OTLP
F4: All students having Laptops
The following observations were summarized from the survey.

1. 80 schools did not have any of the four facilities - F1, F2, F3, F4.
2. 40 schools had all four facilities.
3. The number of schools with only F1, only F2, only F3, and only F4 was $25,30,26$ and 20 respectively.
4. The number of schools with exactly three of the facilities was the same irrespective of which three were considered.
5. 313 schools had F2.
6. 26 schools had only F2 and F3 (but neither F1 nor F4).
7. Among the schools having F4, 24 had only F3, and 45 had only F2.
8. 162 schools had both F1 and F2.
9. The number of schools having $F 1$ was the same as the number of schools having F4.

Question 21

What was the total number of schools having exactly three of the four facilities?

A 64

B 50

C 200

D 80

Answer: C

Explanation:

Let the number of schools with exactly three of the facilities was the same irrespective of which three were considered be x.
Number of schools with none of the facilities be ' n ' from $1, n=80$.
Number of schools with only F1 and F2 be 'b'
Number of schools with only F1 and F3 be 'c'
Number of schools with only F1 and F4 be 'd'
From the information given in the question we will get the following Venn diagram.

From $5, b+141+3 x=313=>b+3 x=172 \ldots$ (i)
From $8, b+x+40+x=162 \Rightarrow b+2 x=122 \ldots$.(ii)
(ii)-(i) gives $x=50=>b=22$

From 9, 237+3x+c+d=279+3x=d $\Rightarrow c=42$
Total number of schools $=600=>313+25+c+x+d+26+24+20+80=600=>d=20$.
The final table looks like:

The total number of schools with exactly three of the four facilities $=4 \mathrm{x}=200$.

Free CAT Preparation Video Lectures

Question 22

What was the number of schools having facilities F2 and F4?

A 185

B 95

C 45

D 85
Answer: A

Explanation:

Let the number of schools with exactly three of the facilities was the same irrespective of which three were considered be x.
Number of schools with none of the facilities be ' n ' from $1, n=80$.
Number of schools with only F1 and F2 be 'b'
Number of schools with only F1 and F3 be 'c'
Number of schools with only F1 and F4 be 'd'
From the information given in the question we will get the following Venn diagram.

From $5, b+141+3 x=313=>b+3 x=172 \ldots$ (i)
From $8, b+x+40+x=162 \Rightarrow b+2 x=122 \ldots$.(ii)
(ii)-(i) gives $x=50=>b=22$

From 9, 237+3x+c+d=279+3x=d =>c=42
Total number of schools $=600=>313+25+c+x+d+26+24+20+80=600=>d=20$.
The final table looks like:

The total number of schools having facilities F4 and F2 $=45+50+50+40=185$.

Question 23

What was the number of schools having only facilities F1 and F3?

Answer:42

Explanation:

Let the number of schools with exactly three of the facilities was the same irrespective of which three were considered be x . Number of schools with none of the facilities be ' n ' from $1, n=80$.

Number of schools with only F1 and F2 be 'b'
Number of schools with only F1 and F3 be 'c'
Number of schools with only F1 and F4 be 'c
From the information given in the question we will get the following Venn diagram.

From 5, $b+141+3 x=313=>b+3 x=172 \ldots$ (i)
From $8, b+x+40+x=162=>b+2 x=122 \ldots$.(ii)
(ii)-(i) gives $x=50=>b=22$

From 9, 237 $+3 x+c+d=279+3 x=d=>c=42$
Total number of schools $=600=>313+25+c+x+d+26+24+20+80=600=>d=20$.
The final table looks like:

The total number of schools having only F1 and $F 3=c=42$

Question 24

What was the number of schools having only facilities F1 and F4?

Answer:20

Explanation:

Let the number of schools with exactly three of the facilities was the same irrespective of which three were considered be x. Number of schools with none of the facilities be ' n ' from 1, $n=80$.

Number of schools with only F1 and F2 be 'b'
Number of schools with only F1 and F3 be 'c'
Number of schools with only F1 and F4 be 'd'
From the information given in the question we will get the following Venn diagram.

From 5, $b+141+3 x=313=>b+3 x=172 \ldots$.(i)
From $8, b+x+40+x=162=>b+2 x=122 \ldots$.(ii)
(ii)-(i) gives $x=50=>b=22$

From 9, $237+3 x+c+d=279+3 x=d=>c=42$
Total number of schools $=600=>313+25+c+x+d+26+24+20+80=600=>d=20$.
The final table looks like:

The total number of schools having only F1 and F4=20.
Daily Free CAT Practice Tests

Take 3 Free CAT Mocks (With Solutions)
CAT Previous Papers PDF
Free CAT Exam Preparation App
CAT Formulas PDF [Download Now]

Downloaded from cracku.in

Top-500 Free CAT Questions (With Solutions)

Free CAT Study Material

Free CAT Preparation Video Lectures

Daily Free CAT Practice Tests
CAT Syllabus (Download PDF)
Free Videos for CAT Preparation

CAT Percentile Predictor

Important Verbal Ability Questions for CAT (Download PDF)
How to prepare for Logical Reasoning for CAT How to prepare for Verbal Ability for CAT

How to prepare for Data Interpretation for CAT

How to prepare for Quantitative aptitude for CAT
Data Interpretation for CAT Questions (download pdf)
Logical Reasoning for CAT Questions (download pdf)
Quantitative Aptitude for CAT Questions (download pdf)

Know the CAT Percentile Required for IIM Calls
Join MBA Têlegram Group
Enroll for Excellent CAT/MBA courses

Crackú CAT Success Stories

Subscribe to MBA Exams Youtube Channel

CMAT Free Solved Previous Papers.

PGDBA Previous Year Papers (Download PDF)PGDBA Previous Year Papers (Download PDF)

10 MAHCET MBA Mocks - Just Rs. 499 Join CAT 2021 Online Coaching

Take a MAH-MBA CET Mocks Here

Enroll to MAH-MBA CET Crash Course

[^0]: \therefore Number of trees per plot is least for Benna=3.

