Sign in
Please select an account to continue using cracku.in
↓ →
It is given that the sequence $${x_{n}}$$ satisfies $$x_{1} = 0, x_{n+1} = x_{n} + 1 + 2\sqrt{1+ x_{n}}$$ for 𝑛 = 1, 2, ..... Then $$x_{31}$$ is ______________.
Correct Answer: 960
It is given that $$x_1=0$$
$$x_{n+1}=x_n+1+2\sqrt{1+x_n}$$
Thus, $$x_2=x_1+1+2\sqrt{1+x_1}$$ = 0+1+2 = 3
Similarly, $$x_3=x_2+1+2\sqrt{1+x_2}$$ = 3+1+4 = 8
Also, $$x_4=x_3+1+2\sqrt{1+x_3}$$ = 8+1+6 = 15
This forms a series: 0,3,8,15..
The general term of the series is $$T_n=n^2-1$$
Therefore, $$x_{31}$$ = 31*31-1 = 960
Create a FREE account and get: